
io.github.ericmedvet.jgea.experimenter.builders.MultivariateRegressionProblems Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jgea.experimenter Show documentation
Show all versions of jgea.experimenter Show documentation
Experimenter tool based on jgea and textual config files (with jnb).
/*
* Copyright 2023 eric
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.github.ericmedvet.jgea.experimenter.builders;
import io.github.ericmedvet.jgea.problem.regression.NumericalDataset;
import io.github.ericmedvet.jgea.problem.regression.multivariate.MultivariateRegressionFitness;
import io.github.ericmedvet.jgea.problem.regression.multivariate.MultivariateRegressionProblem;
import io.github.ericmedvet.jgea.problem.regression.univariate.UnivariateRegressionFitness;
import io.github.ericmedvet.jnb.core.Param;
import java.util.function.Supplier;
/**
* @author "Eric Medvet" on 2023/04/30 for jgea
*/
public class MultivariateRegressionProblems {
private MultivariateRegressionProblems() {
}
@SuppressWarnings("unused")
public static MultivariateRegressionProblem fromData(
@Param("trainingDataset") Supplier trainingDataset,
@Param(value = "testDataset", dNPM = "ea.d.num.empty()") Supplier testDataset,
@Param(value = "metric", dS = "mse") UnivariateRegressionFitness.Metric metric
) {
return new MultivariateRegressionProblem<>(
new MultivariateRegressionFitness(trainingDataset.get(), metric),
new MultivariateRegressionFitness(testDataset.get(), metric)
);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy