io.github.ericmedvet.jgea.experimenter.builders.NumericalDatasets Maven / Gradle / Ivy
/*-
* ========================LICENSE_START=================================
* jgea-experimenter
* %%
* Copyright (C) 2018 - 2023 Eric Medvet
* %%
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =========================LICENSE_END==================================
*/
package io.github.ericmedvet.jgea.experimenter.builders;
import io.github.ericmedvet.jgea.problem.regression.LazyNumericalDataset;
import io.github.ericmedvet.jgea.problem.regression.ListNumericalDataset;
import io.github.ericmedvet.jgea.problem.regression.NumericalDataset;
import io.github.ericmedvet.jgea.problem.regression.univariate.UnivariateRegressionFitness;
import io.github.ericmedvet.jgea.problem.regression.univariate.UnivariateRegressionProblem;
import io.github.ericmedvet.jnb.core.Param;
import java.io.IOException;
import java.util.List;
import java.util.function.Supplier;
public class NumericalDatasets {
private NumericalDatasets() {}
@SuppressWarnings("unused")
public static Supplier empty(
@Param("xVars") List xVarNames, @Param("yVars") List yVarNames) {
return () -> new ListNumericalDataset(List.of(), xVarNames, yVarNames);
}
@SuppressWarnings("unused")
public static Supplier fromFile(
@Param("filePath") String filePath,
@Param(
value = "folds",
dIs = {0})
List folds,
@Param(value = "nFolds", dI = 1) int nFolds,
@Param(value = "xVarNamePattern", dS = "x.*") String xVarNamePattern,
@Param(value = "yVarNamePattern", dS = "y.*") String yVarNamePattern) {
return () -> {
try {
return new LazyNumericalDataset(filePath, xVarNamePattern, yVarNamePattern)
.folds(folds, nFolds);
} catch (IOException e) {
throw new RuntimeException(e);
}
};
}
@SuppressWarnings("unused")
public static Supplier fromProblem(
@Param("problem") UnivariateRegressionProblem problem) {
return () -> problem.qualityFunction().getDataset();
}
}