Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*-
* ========================LICENSE_START=================================
* jgea-experimenter
* %%
* Copyright (C) 2018 - 2023 Eric Medvet
* %%
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =========================LICENSE_END==================================
*/
package io.github.ericmedvet.jgea.experimenter.builders;
import io.github.ericmedvet.jgea.problem.regression.ListNumericalDataset;
import io.github.ericmedvet.jgea.problem.regression.NumericalDataset;
import io.github.ericmedvet.jgea.problem.regression.univariate.UnivariateRegressionFitness;
import io.github.ericmedvet.jgea.problem.regression.univariate.UnivariateRegressionProblem;
import io.github.ericmedvet.jgea.problem.regression.univariate.synthetic.*;
import io.github.ericmedvet.jnb.core.Param;
import java.io.IOException;
import java.util.List;
import java.util.function.Supplier;
public class UnivariateRegressionProblems {
private UnivariateRegressionProblems() {}
@SuppressWarnings("unused")
public static UnivariateRegressionProblem bundled(
@Param("name") String name,
@Param(value = "metric", dS = "mse") UnivariateRegressionFitness.Metric metric) {
NumericalDataset dataset;
try {
dataset =
switch (name) {
case "concrete" -> ListNumericalDataset.loadFromCSVResource(
"/datasets/regression/concrete.csv", "strength");
case "xor" -> ListNumericalDataset.loadFromCSVResource(
"/datasets/regression/xor.csv", "y");
default -> throw new IllegalArgumentException(
"Unknown bundled dataset: %s".formatted(name));
};
} catch (IOException e) {
throw new IllegalArgumentException("Cannot load bundled dataset: %s".formatted(name));
}
return switch (name) {
case "concrete" -> new UnivariateRegressionProblem<>(
new UnivariateRegressionFitness(dataset.folds(List.of(0, 1, 2, 3), 5), metric),
new UnivariateRegressionFitness(dataset.folds(List.of(4), 5), metric));
case "xor" -> new UnivariateRegressionProblem<>(
new UnivariateRegressionFitness(dataset, metric),
new UnivariateRegressionFitness(dataset, metric));
default -> throw new IllegalArgumentException("Unknown bundled dataset: %s".formatted(name));
};
}
@SuppressWarnings("unused")
public static UnivariateRegressionProblem fromData(
@Param("trainingDataset") Supplier trainingDataset,
@Param(value = "testDataset", dNPM = "ea.d.num.empty()")
Supplier testDataset,
@Param(value = "metric", dS = "mse") UnivariateRegressionFitness.Metric metric) {
return new UnivariateRegressionProblem<>(
new UnivariateRegressionFitness(trainingDataset.get(), metric),
testDataset != null ? new UnivariateRegressionFitness(testDataset.get(), metric) : null);
}
@SuppressWarnings("unused")
public static SyntheticUnivariateRegressionProblem synthetic(
@Param("name") String name,
@Param(value = "metric", dS = "mse") UnivariateRegressionFitness.Metric metric,
@Param(value = "seed", dI = 1) int seed) {
return switch (name) {
case "keijzer6" -> new Keijzer6(metric);
case "nguyen7" -> new Nguyen7(metric, seed);
case "pagie1" -> new Pagie1(metric);
case "polynomial4" -> new Polynomial4(metric);
case "vladislavleva4" -> new Vladislavleva4(metric, seed);
case "xor" -> new Xor(metric);
default -> throw new IllegalArgumentException(
"Unknown synthetic function: %s".formatted(name));
};
}
}