io.github.ericmedvet.jgea.problem.regression.multivariate.MultivariateRegressionProblem Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jgea.problem Show documentation
Show all versions of jgea.problem Show documentation
Problem (benchmarks and templates) for jgea.
The newest version!
/*-
* ========================LICENSE_START=================================
* jgea-problem
* %%
* Copyright (C) 2018 - 2024 Eric Medvet
* %%
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =========================LICENSE_END==================================
*/
package io.github.ericmedvet.jgea.problem.regression.multivariate;
import io.github.ericmedvet.jgea.core.problem.ComparableQualityBasedProblem;
import io.github.ericmedvet.jgea.core.problem.ProblemWithExampleSolution;
import io.github.ericmedvet.jgea.core.problem.ProblemWithValidation;
import io.github.ericmedvet.jgea.core.representation.NamedMultivariateRealFunction;
import io.github.ericmedvet.jsdynsym.core.numerical.UnivariateRealFunction;
public class MultivariateRegressionProblem
implements ComparableQualityBasedProblem,
ProblemWithValidation,
ProblemWithExampleSolution {
private final F fitness;
private final F validationFitness;
public MultivariateRegressionProblem(F fitness, F validationFitness) {
this.fitness = fitness;
this.validationFitness = validationFitness;
}
@Override
public NamedMultivariateRealFunction example() {
return NamedMultivariateRealFunction.from(
UnivariateRealFunction.from(
xs -> 0d, fitness.getDataset().xVarNames().size()),
fitness.getDataset().xVarNames(),
fitness.getDataset().yVarNames());
}
@Override
public F qualityFunction() {
return fitness;
}
@Override
public F validationQualityFunction() {
return validationFitness;
}
}