All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.github.ericmedvet.jgea.problem.regression.multivariate.MultivariateRegressionProblem Maven / Gradle / Ivy

The newest version!
/*-
 * ========================LICENSE_START=================================
 * jgea-problem
 * %%
 * Copyright (C) 2018 - 2024 Eric Medvet
 * %%
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =========================LICENSE_END==================================
 */

package io.github.ericmedvet.jgea.problem.regression.multivariate;

import io.github.ericmedvet.jgea.core.problem.ComparableQualityBasedProblem;
import io.github.ericmedvet.jgea.core.problem.ProblemWithExampleSolution;
import io.github.ericmedvet.jgea.core.problem.ProblemWithValidation;
import io.github.ericmedvet.jgea.core.representation.NamedMultivariateRealFunction;
import io.github.ericmedvet.jsdynsym.core.numerical.UnivariateRealFunction;

public class MultivariateRegressionProblem
    implements ComparableQualityBasedProblem,
        ProblemWithValidation,
        ProblemWithExampleSolution {
  private final F fitness;
  private final F validationFitness;

  public MultivariateRegressionProblem(F fitness, F validationFitness) {
    this.fitness = fitness;
    this.validationFitness = validationFitness;
  }

  @Override
  public NamedMultivariateRealFunction example() {
    return NamedMultivariateRealFunction.from(
        UnivariateRealFunction.from(
            xs -> 0d, fitness.getDataset().xVarNames().size()),
        fitness.getDataset().xVarNames(),
        fitness.getDataset().yVarNames());
  }

  @Override
  public F qualityFunction() {
    return fitness;
  }

  @Override
  public F validationQualityFunction() {
    return validationFitness;
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy