All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.eclipse.dawnsci.nexus.NXsample Maven / Gradle / Ivy

/*-
 *******************************************************************************
 * Copyright (c) 2015 Diamond Light Source Ltd.
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * http://www.eclipse.org/legal/epl-v10.html
 *
 * This file was auto-generated from the NXDL XML definition.
 *******************************************************************************/

package org.eclipse.dawnsci.nexus;

import java.util.Date;
import java.util.Map;

import org.eclipse.dawnsci.analysis.api.tree.DataNode;
import org.eclipse.january.dataset.IDataset;

/**
 * Any information on the sample.
 * This could include scanned variables that
 * are associated with one of the data dimensions, e.g. the magnetic field, or
 * logged data, e.g. monitored temperature vs elapsed time.
 * 

Symbols: * symbolic array lengths to be coordinated between various fields

    *
  • n_comp * number of compositions
  • *
  • n_Temp * number of temperatures
  • *
  • n_eField * number of values in applied electric field
  • *
  • n_mField * number of values in applied magnetic field
  • *
  • n_pField * number of values in applied pressure field
  • *
  • n_sField * number of values in applied stress field

* */ public interface NXsample extends NXobject { public static final String NX_NAME = "name"; public static final String NX_CHEMICAL_FORMULA = "chemical_formula"; public static final String NX_TEMPERATURE = "temperature"; public static final String NX_ELECTRIC_FIELD = "electric_field"; public static final String NX_ELECTRIC_FIELD_ATTRIBUTE_DIRECTION = "direction"; public static final String NX_MAGNETIC_FIELD = "magnetic_field"; public static final String NX_MAGNETIC_FIELD_ATTRIBUTE_DIRECTION = "direction"; public static final String NX_STRESS_FIELD = "stress_field"; public static final String NX_STRESS_FIELD_ATTRIBUTE_DIRECTION = "direction"; public static final String NX_PRESSURE = "pressure"; public static final String NX_CHANGER_POSITION = "changer_position"; public static final String NX_UNIT_CELL_ABC = "unit_cell_abc"; public static final String NX_UNIT_CELL_ALPHABETAGAMMA = "unit_cell_alphabetagamma"; public static final String NX_UNIT_CELL = "unit_cell"; public static final String NX_UNIT_CELL_VOLUME = "unit_cell_volume"; public static final String NX_SAMPLE_ORIENTATION = "sample_orientation"; public static final String NX_ORIENTATION_MATRIX = "orientation_matrix"; public static final String NX_UB_MATRIX = "ub_matrix"; public static final String NX_MASS = "mass"; public static final String NX_DENSITY = "density"; public static final String NX_RELATIVE_MOLECULAR_MASS = "relative_molecular_mass"; public static final String NX_TYPE = "type"; public static final String NX_SITUATION = "situation"; public static final String NX_DESCRIPTION = "description"; public static final String NX_PREPARATION_DATE = "preparation_date"; public static final String NX_COMPONENT = "component"; public static final String NX_SAMPLE_COMPONENT = "sample_component"; public static final String NX_CONCENTRATION = "concentration"; public static final String NX_VOLUME_FRACTION = "volume_fraction"; public static final String NX_SCATTERING_LENGTH_DENSITY = "scattering_length_density"; public static final String NX_UNIT_CELL_CLASS = "unit_cell_class"; public static final String NX_SPACE_GROUP = "space_group"; public static final String NX_POINT_GROUP = "point_group"; public static final String NX_PATH_LENGTH = "path_length"; public static final String NX_PATH_LENGTH_WINDOW = "path_length_window"; public static final String NX_THICKNESS = "thickness"; public static final String NX_EXTERNAL_DAC = "external_DAC"; public static final String NX_SHORT_TITLE = "short_title"; public static final String NX_ROTATION_ANGLE = "rotation_angle"; public static final String NX_X_TRANSLATION = "x_translation"; public static final String NX_DISTANCE = "distance"; /** * Descriptive name of sample * * @return the value. */ public IDataset getName(); /** * Descriptive name of sample * * @param name the name */ public DataNode setName(IDataset name); /** * Descriptive name of sample * * @return the value. */ public String getNameScalar(); /** * Descriptive name of sample * * @param name the name */ public DataNode setNameScalar(String name); /** * The chemical formula specified using CIF conventions. * Abbreviated version of CIF standard: * * Only recognized element symbols may be used. * * Each element symbol is followed by a 'count' number. A count of '1' may be omitted. * * A space or parenthesis must separate each cluster of (element symbol + count). * * Where a group of elements is enclosed in parentheses, the multiplier for the * group must follow the closing parentheses. That is, all element and group * multipliers are assumed to be printed as subscripted numbers. * * Unless the elements are ordered in a manner that corresponds to their chemical * structure, the order of the elements within any group or moiety depends on * whether or not carbon is present. * * If carbon is present, the order should be: * - C, then H, then the other elements in alphabetical order of their symbol. * - If carbon is not present, the elements are listed purely in alphabetic order of their symbol. * * This is the *Hill* system used by Chemical Abstracts. * * @return the value. */ public IDataset getChemical_formula(); /** * The chemical formula specified using CIF conventions. * Abbreviated version of CIF standard: * * Only recognized element symbols may be used. * * Each element symbol is followed by a 'count' number. A count of '1' may be omitted. * * A space or parenthesis must separate each cluster of (element symbol + count). * * Where a group of elements is enclosed in parentheses, the multiplier for the * group must follow the closing parentheses. That is, all element and group * multipliers are assumed to be printed as subscripted numbers. * * Unless the elements are ordered in a manner that corresponds to their chemical * structure, the order of the elements within any group or moiety depends on * whether or not carbon is present. * * If carbon is present, the order should be: * - C, then H, then the other elements in alphabetical order of their symbol. * - If carbon is not present, the elements are listed purely in alphabetic order of their symbol. * * This is the *Hill* system used by Chemical Abstracts. * * @param chemical_formula the chemical_formula */ public DataNode setChemical_formula(IDataset chemical_formula); /** * The chemical formula specified using CIF conventions. * Abbreviated version of CIF standard: * * Only recognized element symbols may be used. * * Each element symbol is followed by a 'count' number. A count of '1' may be omitted. * * A space or parenthesis must separate each cluster of (element symbol + count). * * Where a group of elements is enclosed in parentheses, the multiplier for the * group must follow the closing parentheses. That is, all element and group * multipliers are assumed to be printed as subscripted numbers. * * Unless the elements are ordered in a manner that corresponds to their chemical * structure, the order of the elements within any group or moiety depends on * whether or not carbon is present. * * If carbon is present, the order should be: * - C, then H, then the other elements in alphabetical order of their symbol. * - If carbon is not present, the elements are listed purely in alphabetic order of their symbol. * * This is the *Hill* system used by Chemical Abstracts. * * @return the value. */ public String getChemical_formulaScalar(); /** * The chemical formula specified using CIF conventions. * Abbreviated version of CIF standard: * * Only recognized element symbols may be used. * * Each element symbol is followed by a 'count' number. A count of '1' may be omitted. * * A space or parenthesis must separate each cluster of (element symbol + count). * * Where a group of elements is enclosed in parentheses, the multiplier for the * group must follow the closing parentheses. That is, all element and group * multipliers are assumed to be printed as subscripted numbers. * * Unless the elements are ordered in a manner that corresponds to their chemical * structure, the order of the elements within any group or moiety depends on * whether or not carbon is present. * * If carbon is present, the order should be: * - C, then H, then the other elements in alphabetical order of their symbol. * - If carbon is not present, the elements are listed purely in alphabetic order of their symbol. * * This is the *Hill* system used by Chemical Abstracts. * * @param chemical_formula the chemical_formula */ public DataNode setChemical_formulaScalar(String chemical_formula); /** * Sample temperature. This could be a scanned variable *

* Type: NX_FLOAT * Units: NX_TEMPERATURE * Dimensions: 1: n_Temp; *

* * @return the value. */ public IDataset getTemperature(); /** * Sample temperature. This could be a scanned variable *

* Type: NX_FLOAT * Units: NX_TEMPERATURE * Dimensions: 1: n_Temp; *

* * @param temperature the temperature */ public DataNode setTemperature(IDataset temperature); /** * Sample temperature. This could be a scanned variable *

* Type: NX_FLOAT * Units: NX_TEMPERATURE * Dimensions: 1: n_Temp; *

* * @return the value. */ public Double getTemperatureScalar(); /** * Sample temperature. This could be a scanned variable *

* Type: NX_FLOAT * Units: NX_TEMPERATURE * Dimensions: 1: n_Temp; *

* * @param temperature the temperature */ public DataNode setTemperatureScalar(Double temperature); /** * Applied electric field *

* Type: NX_FLOAT * Units: NX_VOLTAGE * Dimensions: 1: n_eField; *

* * @return the value. */ public IDataset getElectric_field(); /** * Applied electric field *

* Type: NX_FLOAT * Units: NX_VOLTAGE * Dimensions: 1: n_eField; *

* * @param electric_field the electric_field */ public DataNode setElectric_field(IDataset electric_field); /** * Applied electric field *

* Type: NX_FLOAT * Units: NX_VOLTAGE * Dimensions: 1: n_eField; *

* * @return the value. */ public Double getElectric_fieldScalar(); /** * Applied electric field *

* Type: NX_FLOAT * Units: NX_VOLTAGE * Dimensions: 1: n_eField; *

* * @param electric_field the electric_field */ public DataNode setElectric_fieldScalar(Double electric_field); /** *

*

Enumeration:

    *
  • x
  • *
  • y
  • *
  • z

*

* * @return the value. */ public String getElectric_fieldAttributeDirection(); /** *

*

Enumeration:

    *
  • x
  • *
  • y
  • *
  • z

*

* * @param direction the direction */ public void setElectric_fieldAttributeDirection(String direction); /** * Applied magnetic field *

* Type: NX_FLOAT * Units: NX_ANY * Dimensions: 1: n_mField; *

* * @return the value. */ public IDataset getMagnetic_field(); /** * Applied magnetic field *

* Type: NX_FLOAT * Units: NX_ANY * Dimensions: 1: n_mField; *

* * @param magnetic_field the magnetic_field */ public DataNode setMagnetic_field(IDataset magnetic_field); /** * Applied magnetic field *

* Type: NX_FLOAT * Units: NX_ANY * Dimensions: 1: n_mField; *

* * @return the value. */ public Double getMagnetic_fieldScalar(); /** * Applied magnetic field *

* Type: NX_FLOAT * Units: NX_ANY * Dimensions: 1: n_mField; *

* * @param magnetic_field the magnetic_field */ public DataNode setMagnetic_fieldScalar(Double magnetic_field); /** *

*

Enumeration:

    *
  • x
  • *
  • y
  • *
  • z

*

* * @return the value. */ public String getMagnetic_fieldAttributeDirection(); /** *

*

Enumeration:

    *
  • x
  • *
  • y
  • *
  • z

*

* * @param direction the direction */ public void setMagnetic_fieldAttributeDirection(String direction); /** * Applied external stress field *

* Type: NX_FLOAT * Units: NX_ANY * Dimensions: 1: n_sField; *

* * @return the value. */ public IDataset getStress_field(); /** * Applied external stress field *

* Type: NX_FLOAT * Units: NX_ANY * Dimensions: 1: n_sField; *

* * @param stress_field the stress_field */ public DataNode setStress_field(IDataset stress_field); /** * Applied external stress field *

* Type: NX_FLOAT * Units: NX_ANY * Dimensions: 1: n_sField; *

* * @return the value. */ public Double getStress_fieldScalar(); /** * Applied external stress field *

* Type: NX_FLOAT * Units: NX_ANY * Dimensions: 1: n_sField; *

* * @param stress_field the stress_field */ public DataNode setStress_fieldScalar(Double stress_field); /** *

*

Enumeration:

    *
  • x
  • *
  • y
  • *
  • z

*

* * @return the value. */ public String getStress_fieldAttributeDirection(); /** *

*

Enumeration:

    *
  • x
  • *
  • y
  • *
  • z

*

* * @param direction the direction */ public void setStress_fieldAttributeDirection(String direction); /** * Applied pressure *

* Type: NX_FLOAT * Units: NX_PRESSURE * Dimensions: 1: n_pField; *

* * @return the value. */ public IDataset getPressure(); /** * Applied pressure *

* Type: NX_FLOAT * Units: NX_PRESSURE * Dimensions: 1: n_pField; *

* * @param pressure the pressure */ public DataNode setPressure(IDataset pressure); /** * Applied pressure *

* Type: NX_FLOAT * Units: NX_PRESSURE * Dimensions: 1: n_pField; *

* * @return the value. */ public Double getPressureScalar(); /** * Applied pressure *

* Type: NX_FLOAT * Units: NX_PRESSURE * Dimensions: 1: n_pField; *

* * @param pressure the pressure */ public DataNode setPressureScalar(Double pressure); /** * Sample changer position *

* Type: NX_INT * Units: NX_UNITLESS *

* * @return the value. */ public IDataset getChanger_position(); /** * Sample changer position *

* Type: NX_INT * Units: NX_UNITLESS *

* * @param changer_position the changer_position */ public DataNode setChanger_position(IDataset changer_position); /** * Sample changer position *

* Type: NX_INT * Units: NX_UNITLESS *

* * @return the value. */ public Long getChanger_positionScalar(); /** * Sample changer position *

* Type: NX_INT * Units: NX_UNITLESS *

* * @param changer_position the changer_position */ public DataNode setChanger_positionScalar(Long changer_position); /** * Crystallography unit cell parameters a, b, and c *

* Type: NX_FLOAT * Units: NX_LENGTH * Dimensions: 1: 3; *

* * @return the value. */ public IDataset getUnit_cell_abc(); /** * Crystallography unit cell parameters a, b, and c *

* Type: NX_FLOAT * Units: NX_LENGTH * Dimensions: 1: 3; *

* * @param unit_cell_abc the unit_cell_abc */ public DataNode setUnit_cell_abc(IDataset unit_cell_abc); /** * Crystallography unit cell parameters a, b, and c *

* Type: NX_FLOAT * Units: NX_LENGTH * Dimensions: 1: 3; *

* * @return the value. */ public Double getUnit_cell_abcScalar(); /** * Crystallography unit cell parameters a, b, and c *

* Type: NX_FLOAT * Units: NX_LENGTH * Dimensions: 1: 3; *

* * @param unit_cell_abc the unit_cell_abc */ public DataNode setUnit_cell_abcScalar(Double unit_cell_abc); /** * Crystallography unit cell parameters alpha, beta, and gamma *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @return the value. */ public IDataset getUnit_cell_alphabetagamma(); /** * Crystallography unit cell parameters alpha, beta, and gamma *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @param unit_cell_alphabetagamma the unit_cell_alphabetagamma */ public DataNode setUnit_cell_alphabetagamma(IDataset unit_cell_alphabetagamma); /** * Crystallography unit cell parameters alpha, beta, and gamma *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @return the value. */ public Double getUnit_cell_alphabetagammaScalar(); /** * Crystallography unit cell parameters alpha, beta, and gamma *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @param unit_cell_alphabetagamma the unit_cell_alphabetagamma */ public DataNode setUnit_cell_alphabetagammaScalar(Double unit_cell_alphabetagamma); /** * Unit cell parameters (lengths and angles) *

* Type: NX_FLOAT * Units: NX_LENGTH * Dimensions: 1: n_comp; 2: 6; *

* * @return the value. */ public IDataset getUnit_cell(); /** * Unit cell parameters (lengths and angles) *

* Type: NX_FLOAT * Units: NX_LENGTH * Dimensions: 1: n_comp; 2: 6; *

* * @param unit_cell the unit_cell */ public DataNode setUnit_cell(IDataset unit_cell); /** * Unit cell parameters (lengths and angles) *

* Type: NX_FLOAT * Units: NX_LENGTH * Dimensions: 1: n_comp; 2: 6; *

* * @return the value. */ public Double getUnit_cellScalar(); /** * Unit cell parameters (lengths and angles) *

* Type: NX_FLOAT * Units: NX_LENGTH * Dimensions: 1: n_comp; 2: 6; *

* * @param unit_cell the unit_cell */ public DataNode setUnit_cellScalar(Double unit_cell); /** * Volume of the unit cell *

* Type: NX_FLOAT * Units: NX_VOLUME * Dimensions: 1: n_comp; *

* * @return the value. */ public IDataset getUnit_cell_volume(); /** * Volume of the unit cell *

* Type: NX_FLOAT * Units: NX_VOLUME * Dimensions: 1: n_comp; *

* * @param unit_cell_volume the unit_cell_volume */ public DataNode setUnit_cell_volume(IDataset unit_cell_volume); /** * Volume of the unit cell *

* Type: NX_FLOAT * Units: NX_VOLUME * Dimensions: 1: n_comp; *

* * @return the value. */ public Double getUnit_cell_volumeScalar(); /** * Volume of the unit cell *

* Type: NX_FLOAT * Units: NX_VOLUME * Dimensions: 1: n_comp; *

* * @param unit_cell_volume the unit_cell_volume */ public DataNode setUnit_cell_volumeScalar(Double unit_cell_volume); /** * This will follow the Busing-Levy convention: * W. R. Busing and H. A. Levy (1967). Acta Cryst. 22, 457-464 *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @return the value. */ public IDataset getSample_orientation(); /** * This will follow the Busing-Levy convention: * W. R. Busing and H. A. Levy (1967). Acta Cryst. 22, 457-464 *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @param sample_orientation the sample_orientation */ public DataNode setSample_orientation(IDataset sample_orientation); /** * This will follow the Busing-Levy convention: * W. R. Busing and H. A. Levy (1967). Acta Cryst. 22, 457-464 *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @return the value. */ public Double getSample_orientationScalar(); /** * This will follow the Busing-Levy convention: * W. R. Busing and H. A. Levy (1967). Acta Cryst. 22, 457-464 *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @param sample_orientation the sample_orientation */ public DataNode setSample_orientationScalar(Double sample_orientation); /** * Orientation matrix of single crystal sample using Busing-Levy convention: * W. R. Busing and H. A. Levy (1967). Acta Cryst. 22, 457-464 *

* Type: NX_FLOAT * Dimensions: 1: n_comp; 2: 3; 3: 3; *

* * @return the value. */ public IDataset getOrientation_matrix(); /** * Orientation matrix of single crystal sample using Busing-Levy convention: * W. R. Busing and H. A. Levy (1967). Acta Cryst. 22, 457-464 *

* Type: NX_FLOAT * Dimensions: 1: n_comp; 2: 3; 3: 3; *

* * @param orientation_matrix the orientation_matrix */ public DataNode setOrientation_matrix(IDataset orientation_matrix); /** * Orientation matrix of single crystal sample using Busing-Levy convention: * W. R. Busing and H. A. Levy (1967). Acta Cryst. 22, 457-464 *

* Type: NX_FLOAT * Dimensions: 1: n_comp; 2: 3; 3: 3; *

* * @return the value. */ public Double getOrientation_matrixScalar(); /** * Orientation matrix of single crystal sample using Busing-Levy convention: * W. R. Busing and H. A. Levy (1967). Acta Cryst. 22, 457-464 *

* Type: NX_FLOAT * Dimensions: 1: n_comp; 2: 3; 3: 3; *

* * @param orientation_matrix the orientation_matrix */ public DataNode setOrientation_matrixScalar(Double orientation_matrix); /** * UB matrix of single crystal sample using Busing-Levy convention: * W. R. Busing and H. A. Levy (1967). Acta Cryst. 22, 457-464. This is * the multiplication of the orientation_matrix, given above, * with the :math:`B` matrix which * can be derived from the lattice constants. *

* Type: NX_FLOAT * Dimensions: 1: n_comp; 2: 3; 3: 3; *

* * @return the value. */ public IDataset getUb_matrix(); /** * UB matrix of single crystal sample using Busing-Levy convention: * W. R. Busing and H. A. Levy (1967). Acta Cryst. 22, 457-464. This is * the multiplication of the orientation_matrix, given above, * with the :math:`B` matrix which * can be derived from the lattice constants. *

* Type: NX_FLOAT * Dimensions: 1: n_comp; 2: 3; 3: 3; *

* * @param ub_matrix the ub_matrix */ public DataNode setUb_matrix(IDataset ub_matrix); /** * UB matrix of single crystal sample using Busing-Levy convention: * W. R. Busing and H. A. Levy (1967). Acta Cryst. 22, 457-464. This is * the multiplication of the orientation_matrix, given above, * with the :math:`B` matrix which * can be derived from the lattice constants. *

* Type: NX_FLOAT * Dimensions: 1: n_comp; 2: 3; 3: 3; *

* * @return the value. */ public Double getUb_matrixScalar(); /** * UB matrix of single crystal sample using Busing-Levy convention: * W. R. Busing and H. A. Levy (1967). Acta Cryst. 22, 457-464. This is * the multiplication of the orientation_matrix, given above, * with the :math:`B` matrix which * can be derived from the lattice constants. *

* Type: NX_FLOAT * Dimensions: 1: n_comp; 2: 3; 3: 3; *

* * @param ub_matrix the ub_matrix */ public DataNode setUb_matrixScalar(Double ub_matrix); /** * Mass of sample *

* Type: NX_FLOAT * Units: NX_MASS * Dimensions: 1: n_comp; *

* * @return the value. */ public IDataset getMass(); /** * Mass of sample *

* Type: NX_FLOAT * Units: NX_MASS * Dimensions: 1: n_comp; *

* * @param mass the mass */ public DataNode setMass(IDataset mass); /** * Mass of sample *

* Type: NX_FLOAT * Units: NX_MASS * Dimensions: 1: n_comp; *

* * @return the value. */ public Double getMassScalar(); /** * Mass of sample *

* Type: NX_FLOAT * Units: NX_MASS * Dimensions: 1: n_comp; *

* * @param mass the mass */ public DataNode setMassScalar(Double mass); /** * Density of sample *

* Type: NX_FLOAT * Units: NX_MASS_DENSITY * Dimensions: 1: n_comp; *

* * @return the value. */ public IDataset getDensity(); /** * Density of sample *

* Type: NX_FLOAT * Units: NX_MASS_DENSITY * Dimensions: 1: n_comp; *

* * @param density the density */ public DataNode setDensity(IDataset density); /** * Density of sample *

* Type: NX_FLOAT * Units: NX_MASS_DENSITY * Dimensions: 1: n_comp; *

* * @return the value. */ public Double getDensityScalar(); /** * Density of sample *

* Type: NX_FLOAT * Units: NX_MASS_DENSITY * Dimensions: 1: n_comp; *

* * @param density the density */ public DataNode setDensityScalar(Double density); /** * Relative Molecular Mass of sample *

* Type: NX_FLOAT * Units: NX_MASS * Dimensions: 1: n_comp; *

* * @return the value. */ public IDataset getRelative_molecular_mass(); /** * Relative Molecular Mass of sample *

* Type: NX_FLOAT * Units: NX_MASS * Dimensions: 1: n_comp; *

* * @param relative_molecular_mass the relative_molecular_mass */ public DataNode setRelative_molecular_mass(IDataset relative_molecular_mass); /** * Relative Molecular Mass of sample *

* Type: NX_FLOAT * Units: NX_MASS * Dimensions: 1: n_comp; *

* * @return the value. */ public Double getRelative_molecular_massScalar(); /** * Relative Molecular Mass of sample *

* Type: NX_FLOAT * Units: NX_MASS * Dimensions: 1: n_comp; *

* * @param relative_molecular_mass the relative_molecular_mass */ public DataNode setRelative_molecular_massScalar(Double relative_molecular_mass); /** *

*

Enumeration:

    *
  • sample
  • *
  • sample+can
  • *
  • can
  • *
  • sample+buffer
  • *
  • buffer
  • *
  • calibration sample
  • *
  • normalisation sample
  • *
  • simulated data
  • *
  • none
  • *
  • sample environment

*

* * @return the value. */ public IDataset getType(); /** *

*

Enumeration:

    *
  • sample
  • *
  • sample+can
  • *
  • can
  • *
  • sample+buffer
  • *
  • buffer
  • *
  • calibration sample
  • *
  • normalisation sample
  • *
  • simulated data
  • *
  • none
  • *
  • sample environment

*

* * @param type the type */ public DataNode setType(IDataset type); /** *

*

Enumeration:

    *
  • sample
  • *
  • sample+can
  • *
  • can
  • *
  • sample+buffer
  • *
  • buffer
  • *
  • calibration sample
  • *
  • normalisation sample
  • *
  • simulated data
  • *
  • none
  • *
  • sample environment

*

* * @return the value. */ public String getTypeScalar(); /** *

*

Enumeration:

    *
  • sample
  • *
  • sample+can
  • *
  • can
  • *
  • sample+buffer
  • *
  • buffer
  • *
  • calibration sample
  • *
  • normalisation sample
  • *
  • simulated data
  • *
  • none
  • *
  • sample environment

*

* * @param type the type */ public DataNode setTypeScalar(String type); /** * The atmosphere will be one of the components, which is where * its details will be stored; the relevant components will be * indicated by the entry in the sample_component member. *

*

Enumeration:

    *
  • air
  • *
  • vacuum
  • *
  • inert atmosphere
  • *
  • oxidising atmosphere
  • *
  • reducing atmosphere
  • *
  • sealed can
  • *
  • other

*

* * @return the value. */ public IDataset getSituation(); /** * The atmosphere will be one of the components, which is where * its details will be stored; the relevant components will be * indicated by the entry in the sample_component member. *

*

Enumeration:

    *
  • air
  • *
  • vacuum
  • *
  • inert atmosphere
  • *
  • oxidising atmosphere
  • *
  • reducing atmosphere
  • *
  • sealed can
  • *
  • other

*

* * @param situation the situation */ public DataNode setSituation(IDataset situation); /** * The atmosphere will be one of the components, which is where * its details will be stored; the relevant components will be * indicated by the entry in the sample_component member. *

*

Enumeration:

    *
  • air
  • *
  • vacuum
  • *
  • inert atmosphere
  • *
  • oxidising atmosphere
  • *
  • reducing atmosphere
  • *
  • sealed can
  • *
  • other

*

* * @return the value. */ public String getSituationScalar(); /** * The atmosphere will be one of the components, which is where * its details will be stored; the relevant components will be * indicated by the entry in the sample_component member. *

*

Enumeration:

    *
  • air
  • *
  • vacuum
  • *
  • inert atmosphere
  • *
  • oxidising atmosphere
  • *
  • reducing atmosphere
  • *
  • sealed can
  • *
  • other

*

* * @param situation the situation */ public DataNode setSituationScalar(String situation); /** * Description of the sample * * @return the value. */ public IDataset getDescription(); /** * Description of the sample * * @param description the description */ public DataNode setDescription(IDataset description); /** * Description of the sample * * @return the value. */ public String getDescriptionScalar(); /** * Description of the sample * * @param description the description */ public DataNode setDescriptionScalar(String description); /** * Date of preparation of the sample *

* Type: NX_DATE_TIME *

* * @return the value. */ public IDataset getPreparation_date(); /** * Date of preparation of the sample *

* Type: NX_DATE_TIME *

* * @param preparation_date the preparation_date */ public DataNode setPreparation_date(IDataset preparation_date); /** * Date of preparation of the sample *

* Type: NX_DATE_TIME *

* * @return the value. */ public Date getPreparation_dateScalar(); /** * Date of preparation of the sample *

* Type: NX_DATE_TIME *

* * @param preparation_date the preparation_date */ public DataNode setPreparation_dateScalar(Date preparation_date); /** * The position and orientation of the center of mass of the sample * * @return the value. */ public NXgeometry getGeometry(); /** * The position and orientation of the center of mass of the sample * * @param geometry the geometry */ public void setGeometry(NXgeometry geometry); /** * Details of beam incident on sample - used to calculate sample/beam interaction point * * @return the value. */ public NXbeam getBeam(); /** * Details of beam incident on sample - used to calculate sample/beam interaction point * * @param beam the beam */ public void setBeam(NXbeam beam); /** * Get a NXbeam node by name: *
    *
  • * Details of beam incident on sample - used to calculate sample/beam interaction point
  • *
* * @param name the name of the node. * @return a map from node names to the NXbeam for that node. */ public NXbeam getBeam(String name); /** * Set a NXbeam node by name: *
    *
  • * Details of beam incident on sample - used to calculate sample/beam interaction point
  • *
* * @param name the name of the node * @param beam the value to set */ public void setBeam(String name, NXbeam beam); /** * Get all NXbeam nodes: *
    *
  • * Details of beam incident on sample - used to calculate sample/beam interaction point
  • *
* * @return a map from node names to the NXbeam for that node. */ public Map getAllBeam(); /** * Set multiple child nodes of a particular type. *
    *
  • * Details of beam incident on sample - used to calculate sample/beam interaction point
  • *
* * @param beam the child nodes to add */ public void setAllBeam(Map beam); /** * One group per sample component * This is the perferred way of recording per component information over the n_comp arrays * * @return the value. */ public NXsample_component getSample_componentGroup(); /** * One group per sample component * This is the perferred way of recording per component information over the n_comp arrays * * @param sample_componentGroup the sample_componentGroup */ public void setSample_componentGroup(NXsample_component sample_componentGroup); /** * Get a NXsample_component node by name: *
    *
  • * One group per sample component * This is the perferred way of recording per component information over the n_comp arrays
  • *
* * @param name the name of the node. * @return a map from node names to the NXsample_component for that node. */ public NXsample_component getSample_componentGroup(String name); /** * Set a NXsample_component node by name: *
    *
  • * One group per sample component * This is the perferred way of recording per component information over the n_comp arrays
  • *
* * @param name the name of the node * @param sample_componentGroup the value to set */ public void setSample_componentGroup(String name, NXsample_component sample_componentGroup); /** * Get all NXsample_component nodes: *
    *
  • * One group per sample component * This is the perferred way of recording per component information over the n_comp arrays
  • *
* * @return a map from node names to the NXsample_component for that node. */ public Map getAllSample_componentGroup(); /** * Set multiple child nodes of a particular type. *
    *
  • * One group per sample component * This is the perferred way of recording per component information over the n_comp arrays
  • *
* * @param sample_componentGroup the child nodes to add */ public void setAllSample_componentGroup(Map sample_componentGroup); /** * Details of the component of the sample and/or can *

* Dimensions: 1: n_comp; *

* * @return the value. */ public IDataset getComponent(); /** * Details of the component of the sample and/or can *

* Dimensions: 1: n_comp; *

* * @param component the component */ public DataNode setComponent(IDataset component); /** * Details of the component of the sample and/or can *

* Dimensions: 1: n_comp; *

* * @return the value. */ public String getComponentScalar(); /** * Details of the component of the sample and/or can *

* Dimensions: 1: n_comp; *

* * @param component the component */ public DataNode setComponentScalar(String component); /** * Type of component *

* Dimensions: 1: n_comp; *

Enumeration:

    *
  • sample
  • *
  • can
  • *
  • atmosphere
  • *
  • kit

*

* * @return the value. */ public IDataset getSample_component(); /** * Type of component *

* Dimensions: 1: n_comp; *

Enumeration:

    *
  • sample
  • *
  • can
  • *
  • atmosphere
  • *
  • kit

*

* * @param sample_component the sample_component */ public DataNode setSample_component(IDataset sample_component); /** * Type of component *

* Dimensions: 1: n_comp; *

Enumeration:

    *
  • sample
  • *
  • can
  • *
  • atmosphere
  • *
  • kit

*

* * @return the value. */ public String getSample_componentScalar(); /** * Type of component *

* Dimensions: 1: n_comp; *

Enumeration:

    *
  • sample
  • *
  • can
  • *
  • atmosphere
  • *
  • kit

*

* * @param sample_component the sample_component */ public DataNode setSample_componentScalar(String sample_component); /** * Concentration of each component *

* Type: NX_FLOAT * Units: NX_MASS_DENSITY * Dimensions: 1: n_comp; *

* * @return the value. */ public IDataset getConcentration(); /** * Concentration of each component *

* Type: NX_FLOAT * Units: NX_MASS_DENSITY * Dimensions: 1: n_comp; *

* * @param concentration the concentration */ public DataNode setConcentration(IDataset concentration); /** * Concentration of each component *

* Type: NX_FLOAT * Units: NX_MASS_DENSITY * Dimensions: 1: n_comp; *

* * @return the value. */ public Double getConcentrationScalar(); /** * Concentration of each component *

* Type: NX_FLOAT * Units: NX_MASS_DENSITY * Dimensions: 1: n_comp; *

* * @param concentration the concentration */ public DataNode setConcentrationScalar(Double concentration); /** * Volume fraction of each component *

* Type: NX_FLOAT * Dimensions: 1: n_comp; *

* * @return the value. */ public IDataset getVolume_fraction(); /** * Volume fraction of each component *

* Type: NX_FLOAT * Dimensions: 1: n_comp; *

* * @param volume_fraction the volume_fraction */ public DataNode setVolume_fraction(IDataset volume_fraction); /** * Volume fraction of each component *

* Type: NX_FLOAT * Dimensions: 1: n_comp; *

* * @return the value. */ public Double getVolume_fractionScalar(); /** * Volume fraction of each component *

* Type: NX_FLOAT * Dimensions: 1: n_comp; *

* * @param volume_fraction the volume_fraction */ public DataNode setVolume_fractionScalar(Double volume_fraction); /** * Scattering length density of each component *

* Type: NX_FLOAT * Units: NX_SCATTERING_LENGTH_DENSITY * Dimensions: 1: n_comp; *

* * @return the value. */ public IDataset getScattering_length_density(); /** * Scattering length density of each component *

* Type: NX_FLOAT * Units: NX_SCATTERING_LENGTH_DENSITY * Dimensions: 1: n_comp; *

* * @param scattering_length_density the scattering_length_density */ public DataNode setScattering_length_density(IDataset scattering_length_density); /** * Scattering length density of each component *

* Type: NX_FLOAT * Units: NX_SCATTERING_LENGTH_DENSITY * Dimensions: 1: n_comp; *

* * @return the value. */ public Double getScattering_length_densityScalar(); /** * Scattering length density of each component *

* Type: NX_FLOAT * Units: NX_SCATTERING_LENGTH_DENSITY * Dimensions: 1: n_comp; *

* * @param scattering_length_density the scattering_length_density */ public DataNode setScattering_length_densityScalar(Double scattering_length_density); /** * In case it is all we know and we want to record/document it *

*

Enumeration:

    *
  • triclinic
  • *
  • monoclinic
  • *
  • orthorhombic
  • *
  • tetragonal
  • *
  • rhombohedral
  • *
  • hexagonal
  • *
  • cubic

*

* * @return the value. */ public IDataset getUnit_cell_class(); /** * In case it is all we know and we want to record/document it *

*

Enumeration:

    *
  • triclinic
  • *
  • monoclinic
  • *
  • orthorhombic
  • *
  • tetragonal
  • *
  • rhombohedral
  • *
  • hexagonal
  • *
  • cubic

*

* * @param unit_cell_class the unit_cell_class */ public DataNode setUnit_cell_class(IDataset unit_cell_class); /** * In case it is all we know and we want to record/document it *

*

Enumeration:

    *
  • triclinic
  • *
  • monoclinic
  • *
  • orthorhombic
  • *
  • tetragonal
  • *
  • rhombohedral
  • *
  • hexagonal
  • *
  • cubic

*

* * @return the value. */ public String getUnit_cell_classScalar(); /** * In case it is all we know and we want to record/document it *

*

Enumeration:

    *
  • triclinic
  • *
  • monoclinic
  • *
  • orthorhombic
  • *
  • tetragonal
  • *
  • rhombohedral
  • *
  • hexagonal
  • *
  • cubic

*

* * @param unit_cell_class the unit_cell_class */ public DataNode setUnit_cell_classScalar(String unit_cell_class); /** * Crystallographic space group *

* Dimensions: 1: n_comp; *

* * @return the value. */ public IDataset getSpace_group(); /** * Crystallographic space group *

* Dimensions: 1: n_comp; *

* * @param space_group the space_group */ public DataNode setSpace_group(IDataset space_group); /** * Crystallographic space group *

* Dimensions: 1: n_comp; *

* * @return the value. */ public String getSpace_groupScalar(); /** * Crystallographic space group *

* Dimensions: 1: n_comp; *

* * @param space_group the space_group */ public DataNode setSpace_groupScalar(String space_group); /** * Crystallographic point group, deprecated if space_group present *

* Dimensions: 1: n_comp; *

* * @return the value. */ public IDataset getPoint_group(); /** * Crystallographic point group, deprecated if space_group present *

* Dimensions: 1: n_comp; *

* * @param point_group the point_group */ public DataNode setPoint_group(IDataset point_group); /** * Crystallographic point group, deprecated if space_group present *

* Dimensions: 1: n_comp; *

* * @return the value. */ public String getPoint_groupScalar(); /** * Crystallographic point group, deprecated if space_group present *

* Dimensions: 1: n_comp; *

* * @param point_group the point_group */ public DataNode setPoint_groupScalar(String point_group); /** * Path length through sample/can for simple case when * it does not vary with scattering direction *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @return the value. */ public IDataset getPath_length(); /** * Path length through sample/can for simple case when * it does not vary with scattering direction *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @param path_length the path_length */ public DataNode setPath_length(IDataset path_length); /** * Path length through sample/can for simple case when * it does not vary with scattering direction *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @return the value. */ public Double getPath_lengthScalar(); /** * Path length through sample/can for simple case when * it does not vary with scattering direction *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @param path_length the path_length */ public DataNode setPath_lengthScalar(Double path_length); /** * Thickness of a beam entry/exit window on the can (mm) * - assumed same for entry and exit *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @return the value. */ public IDataset getPath_length_window(); /** * Thickness of a beam entry/exit window on the can (mm) * - assumed same for entry and exit *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @param path_length_window the path_length_window */ public DataNode setPath_length_window(IDataset path_length_window); /** * Thickness of a beam entry/exit window on the can (mm) * - assumed same for entry and exit *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @return the value. */ public Double getPath_length_windowScalar(); /** * Thickness of a beam entry/exit window on the can (mm) * - assumed same for entry and exit *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @param path_length_window the path_length_window */ public DataNode setPath_length_windowScalar(Double path_length_window); /** * sample thickness *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @return the value. */ public IDataset getThickness(); /** * sample thickness *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @param thickness the thickness */ public DataNode setThickness(IDataset thickness); /** * sample thickness *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @return the value. */ public Double getThicknessScalar(); /** * sample thickness *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @param thickness the thickness */ public DataNode setThicknessScalar(Double thickness); /** * As a function of Wavelength * * @return the value. */ public NXdata getTransmission(); /** * As a function of Wavelength * * @param transmission the transmission */ public void setTransmission(NXdata transmission); /** * temperature_log.value is a link to e.g. temperature_env.sensor1.value_log.value * * @return the value. */ public NXlog getTemperature_log(); /** * temperature_log.value is a link to e.g. temperature_env.sensor1.value_log.value * * @param temperature_log the temperature_log */ public void setTemperature_log(NXlog temperature_log); /** * Additional sample temperature environment information * * @return the value. */ public NXenvironment getTemperature_env(); /** * Additional sample temperature environment information * * @param temperature_env the temperature_env */ public void setTemperature_env(NXenvironment temperature_env); /** * magnetic_field_log.value is a link to e.g. magnetic_field_env.sensor1.value_log.value * * @return the value. */ public NXlog getMagnetic_field_log(); /** * magnetic_field_log.value is a link to e.g. magnetic_field_env.sensor1.value_log.value * * @param magnetic_field_log the magnetic_field_log */ public void setMagnetic_field_log(NXlog magnetic_field_log); /** * Additional sample magnetic environment information * * @return the value. */ public NXenvironment getMagnetic_field_env(); /** * Additional sample magnetic environment information * * @param magnetic_field_env the magnetic_field_env */ public void setMagnetic_field_env(NXenvironment magnetic_field_env); /** * value sent to user's sample setup *

* Type: NX_FLOAT * Units: NX_ANY *

* * @return the value. */ public IDataset getExternal_DAC(); /** * value sent to user's sample setup *

* Type: NX_FLOAT * Units: NX_ANY *

* * @param external_DAC the external_DAC */ public DataNode setExternal_DAC(IDataset external_DAC); /** * value sent to user's sample setup *

* Type: NX_FLOAT * Units: NX_ANY *

* * @return the value. */ public Double getExternal_DACScalar(); /** * value sent to user's sample setup *

* Type: NX_FLOAT * Units: NX_ANY *

* * @param external_DAC the external_DAC */ public DataNode setExternal_DACScalar(Double external_DAC); /** * logged value (or logic state) read from user's setup * * @return the value. */ public NXlog getExternal_ADC(); /** * logged value (or logic state) read from user's setup * * @param external_ADC the external_ADC */ public void setExternal_ADC(NXlog external_ADC); /** * 20 character fixed length sample description for legends * * @return the value. */ public IDataset getShort_title(); /** * 20 character fixed length sample description for legends * * @param short_title the short_title */ public DataNode setShort_title(IDataset short_title); /** * 20 character fixed length sample description for legends * * @return the value. */ public String getShort_titleScalar(); /** * 20 character fixed length sample description for legends * * @param short_title the short_title */ public DataNode setShort_titleScalar(String short_title); /** * Optional rotation angle for the case when the powder diagram has * been obtained through an omega-2theta scan like from a traditional * single detector powder diffractometer *

* Type: NX_FLOAT * Units: NX_ANGLE *

* * @return the value. */ public IDataset getRotation_angle(); /** * Optional rotation angle for the case when the powder diagram has * been obtained through an omega-2theta scan like from a traditional * single detector powder diffractometer *

* Type: NX_FLOAT * Units: NX_ANGLE *

* * @param rotation_angle the rotation_angle */ public DataNode setRotation_angle(IDataset rotation_angle); /** * Optional rotation angle for the case when the powder diagram has * been obtained through an omega-2theta scan like from a traditional * single detector powder diffractometer *

* Type: NX_FLOAT * Units: NX_ANGLE *

* * @return the value. */ public Double getRotation_angleScalar(); /** * Optional rotation angle for the case when the powder diagram has * been obtained through an omega-2theta scan like from a traditional * single detector powder diffractometer *

* Type: NX_FLOAT * Units: NX_ANGLE *

* * @param rotation_angle the rotation_angle */ public DataNode setRotation_angleScalar(Double rotation_angle); /** * Translation of the sample along the X-direction of the laboratory coordinate system *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @return the value. */ public IDataset getX_translation(); /** * Translation of the sample along the X-direction of the laboratory coordinate system *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @param x_translation the x_translation */ public DataNode setX_translation(IDataset x_translation); /** * Translation of the sample along the X-direction of the laboratory coordinate system *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @return the value. */ public Double getX_translationScalar(); /** * Translation of the sample along the X-direction of the laboratory coordinate system *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @param x_translation the x_translation */ public DataNode setX_translationScalar(Double x_translation); /** * Translation of the sample along the Z-direction of the laboratory coordinate system *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @return the value. */ public IDataset getDistance(); /** * Translation of the sample along the Z-direction of the laboratory coordinate system *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @param distance the distance */ public DataNode setDistance(IDataset distance); /** * Translation of the sample along the Z-direction of the laboratory coordinate system *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @return the value. */ public Double getDistanceScalar(); /** * Translation of the sample along the Z-direction of the laboratory coordinate system *

* Type: NX_FLOAT * Units: NX_LENGTH *

* * @param distance the distance */ public DataNode setDistanceScalar(Double distance); /** * Any positioner (motor, PZT, ...) used to locate the sample * * @return the value. */ public NXpositioner getPositioner(); /** * Any positioner (motor, PZT, ...) used to locate the sample * * @param positioner the positioner */ public void setPositioner(NXpositioner positioner); /** * Get a NXpositioner node by name: *
    *
  • * Any positioner (motor, PZT, ...) used to locate the sample
  • *
* * @param name the name of the node. * @return a map from node names to the NXpositioner for that node. */ public NXpositioner getPositioner(String name); /** * Set a NXpositioner node by name: *
    *
  • * Any positioner (motor, PZT, ...) used to locate the sample
  • *
* * @param name the name of the node * @param positioner the value to set */ public void setPositioner(String name, NXpositioner positioner); /** * Get all NXpositioner nodes: *
    *
  • * Any positioner (motor, PZT, ...) used to locate the sample
  • *
* * @return a map from node names to the NXpositioner for that node. */ public Map getAllPositioner(); /** * Set multiple child nodes of a particular type. *
    *
  • * Any positioner (motor, PZT, ...) used to locate the sample
  • *
* * @param positioner the child nodes to add */ public void setAllPositioner(Map positioner); }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy