All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.eclipse.dawnsci.nexus.NXsample_component Maven / Gradle / Ivy

/*-
 *******************************************************************************
 * Copyright (c) 2015 Diamond Light Source Ltd.
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * http://www.eclipse.org/legal/epl-v10.html
 *
 * This file was auto-generated from the NXDL XML definition.
 *******************************************************************************/

package org.eclipse.dawnsci.nexus;

import org.eclipse.dawnsci.analysis.api.tree.DataNode;
import org.eclipse.january.dataset.IDataset;

/**
 * One group like this per component can be recorded For a sample consisting of multiple components.
 * 

Symbols: * symbolic array lengths to be coordinated between various fields

    *
  • n_Temp * number of temperatures
  • *
  • n_eField * number of values in applied electric field
  • *
  • n_mField * number of values in applied magnetic field
  • *
  • n_pField * number of values in applied pressure field
  • *
  • n_sField * number of values in applied stress field

* */ public interface NXsample_component extends NXobject { public static final String NX_NAME = "name"; public static final String NX_CHEMICAL_FORMULA = "chemical_formula"; public static final String NX_UNIT_CELL_ABC = "unit_cell_abc"; public static final String NX_UNIT_CELL_ALPHABETAGAMMA = "unit_cell_alphabetagamma"; public static final String NX_UNIT_CELL_VOLUME = "unit_cell_volume"; public static final String NX_SAMPLE_ORIENTATION = "sample_orientation"; public static final String NX_ORIENTATION_MATRIX = "orientation_matrix"; public static final String NX_MASS = "mass"; public static final String NX_DENSITY = "density"; public static final String NX_RELATIVE_MOLECULAR_MASS = "relative_molecular_mass"; public static final String NX_DESCRIPTION = "description"; public static final String NX_VOLUME_FRACTION = "volume_fraction"; public static final String NX_SCATTERING_LENGTH_DENSITY = "scattering_length_density"; public static final String NX_UNIT_CELL_CLASS = "unit_cell_class"; public static final String NX_SPACE_GROUP = "space_group"; public static final String NX_POINT_GROUP = "point_group"; /** * Descriptive name of sample component * * @return the value. */ public IDataset getName(); /** * Descriptive name of sample component * * @param name the name */ public DataNode setName(IDataset name); /** * Descriptive name of sample component * * @return the value. */ public String getNameScalar(); /** * Descriptive name of sample component * * @param name the name */ public DataNode setNameScalar(String name); /** * The chemical formula specified using CIF conventions. * Abbreviated version of CIF standard: * * Only recognized element symbols may be used. * * Each element symbol is followed by a 'count' number. A count of '1' may be omitted. * * A space or parenthesis must separate each cluster of (element symbol + count). * * Where a group of elements is enclosed in parentheses, the multiplier for the * group must follow the closing parentheses. That is, all element and group * multipliers are assumed to be printed as subscripted numbers. * * Unless the elements are ordered in a manner that corresponds to their chemical * structure, the order of the elements within any group or moiety depends on * whether or not carbon is present. * * If carbon is present, the order should be: * - C, then H, then the other elements in alphabetical order of their symbol. * - If carbon is not present, the elements are listed purely in alphabetic order of their symbol. * * This is the *Hill* system used by Chemical Abstracts. * * @return the value. */ public IDataset getChemical_formula(); /** * The chemical formula specified using CIF conventions. * Abbreviated version of CIF standard: * * Only recognized element symbols may be used. * * Each element symbol is followed by a 'count' number. A count of '1' may be omitted. * * A space or parenthesis must separate each cluster of (element symbol + count). * * Where a group of elements is enclosed in parentheses, the multiplier for the * group must follow the closing parentheses. That is, all element and group * multipliers are assumed to be printed as subscripted numbers. * * Unless the elements are ordered in a manner that corresponds to their chemical * structure, the order of the elements within any group or moiety depends on * whether or not carbon is present. * * If carbon is present, the order should be: * - C, then H, then the other elements in alphabetical order of their symbol. * - If carbon is not present, the elements are listed purely in alphabetic order of their symbol. * * This is the *Hill* system used by Chemical Abstracts. * * @param chemical_formula the chemical_formula */ public DataNode setChemical_formula(IDataset chemical_formula); /** * The chemical formula specified using CIF conventions. * Abbreviated version of CIF standard: * * Only recognized element symbols may be used. * * Each element symbol is followed by a 'count' number. A count of '1' may be omitted. * * A space or parenthesis must separate each cluster of (element symbol + count). * * Where a group of elements is enclosed in parentheses, the multiplier for the * group must follow the closing parentheses. That is, all element and group * multipliers are assumed to be printed as subscripted numbers. * * Unless the elements are ordered in a manner that corresponds to their chemical * structure, the order of the elements within any group or moiety depends on * whether or not carbon is present. * * If carbon is present, the order should be: * - C, then H, then the other elements in alphabetical order of their symbol. * - If carbon is not present, the elements are listed purely in alphabetic order of their symbol. * * This is the *Hill* system used by Chemical Abstracts. * * @return the value. */ public String getChemical_formulaScalar(); /** * The chemical formula specified using CIF conventions. * Abbreviated version of CIF standard: * * Only recognized element symbols may be used. * * Each element symbol is followed by a 'count' number. A count of '1' may be omitted. * * A space or parenthesis must separate each cluster of (element symbol + count). * * Where a group of elements is enclosed in parentheses, the multiplier for the * group must follow the closing parentheses. That is, all element and group * multipliers are assumed to be printed as subscripted numbers. * * Unless the elements are ordered in a manner that corresponds to their chemical * structure, the order of the elements within any group or moiety depends on * whether or not carbon is present. * * If carbon is present, the order should be: * - C, then H, then the other elements in alphabetical order of their symbol. * - If carbon is not present, the elements are listed purely in alphabetic order of their symbol. * * This is the *Hill* system used by Chemical Abstracts. * * @param chemical_formula the chemical_formula */ public DataNode setChemical_formulaScalar(String chemical_formula); /** * Crystallography unit cell parameters a, b, and c *

* Type: NX_FLOAT * Units: NX_LENGTH * Dimensions: 1: 3; *

* * @return the value. */ public IDataset getUnit_cell_abc(); /** * Crystallography unit cell parameters a, b, and c *

* Type: NX_FLOAT * Units: NX_LENGTH * Dimensions: 1: 3; *

* * @param unit_cell_abc the unit_cell_abc */ public DataNode setUnit_cell_abc(IDataset unit_cell_abc); /** * Crystallography unit cell parameters a, b, and c *

* Type: NX_FLOAT * Units: NX_LENGTH * Dimensions: 1: 3; *

* * @return the value. */ public Double getUnit_cell_abcScalar(); /** * Crystallography unit cell parameters a, b, and c *

* Type: NX_FLOAT * Units: NX_LENGTH * Dimensions: 1: 3; *

* * @param unit_cell_abc the unit_cell_abc */ public DataNode setUnit_cell_abcScalar(Double unit_cell_abc); /** * Crystallography unit cell parameters alpha, beta, and gamma *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @return the value. */ public IDataset getUnit_cell_alphabetagamma(); /** * Crystallography unit cell parameters alpha, beta, and gamma *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @param unit_cell_alphabetagamma the unit_cell_alphabetagamma */ public DataNode setUnit_cell_alphabetagamma(IDataset unit_cell_alphabetagamma); /** * Crystallography unit cell parameters alpha, beta, and gamma *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @return the value. */ public Double getUnit_cell_alphabetagammaScalar(); /** * Crystallography unit cell parameters alpha, beta, and gamma *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @param unit_cell_alphabetagamma the unit_cell_alphabetagamma */ public DataNode setUnit_cell_alphabetagammaScalar(Double unit_cell_alphabetagamma); /** * Volume of the unit cell *

* Type: NX_FLOAT * Units: NX_VOLUME *

* * @return the value. */ public IDataset getUnit_cell_volume(); /** * Volume of the unit cell *

* Type: NX_FLOAT * Units: NX_VOLUME *

* * @param unit_cell_volume the unit_cell_volume */ public DataNode setUnit_cell_volume(IDataset unit_cell_volume); /** * Volume of the unit cell *

* Type: NX_FLOAT * Units: NX_VOLUME *

* * @return the value. */ public Double getUnit_cell_volumeScalar(); /** * Volume of the unit cell *

* Type: NX_FLOAT * Units: NX_VOLUME *

* * @param unit_cell_volume the unit_cell_volume */ public DataNode setUnit_cell_volumeScalar(Double unit_cell_volume); /** * This will follow the Busing and Levy convention from Acta.Crysta v22, p457 (1967) *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @return the value. */ public IDataset getSample_orientation(); /** * This will follow the Busing and Levy convention from Acta.Crysta v22, p457 (1967) *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @param sample_orientation the sample_orientation */ public DataNode setSample_orientation(IDataset sample_orientation); /** * This will follow the Busing and Levy convention from Acta.Crysta v22, p457 (1967) *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @return the value. */ public Double getSample_orientationScalar(); /** * This will follow the Busing and Levy convention from Acta.Crysta v22, p457 (1967) *

* Type: NX_FLOAT * Units: NX_ANGLE * Dimensions: 1: 3; *

* * @param sample_orientation the sample_orientation */ public DataNode setSample_orientationScalar(Double sample_orientation); /** * Orientation matrix of single crystal sample component. * This will follow the Busing and Levy convention from Acta.Crysta v22, p457 (1967) *

* Type: NX_FLOAT * Dimensions: 1: 3; 2: 3; *

* * @return the value. */ public IDataset getOrientation_matrix(); /** * Orientation matrix of single crystal sample component. * This will follow the Busing and Levy convention from Acta.Crysta v22, p457 (1967) *

* Type: NX_FLOAT * Dimensions: 1: 3; 2: 3; *

* * @param orientation_matrix the orientation_matrix */ public DataNode setOrientation_matrix(IDataset orientation_matrix); /** * Orientation matrix of single crystal sample component. * This will follow the Busing and Levy convention from Acta.Crysta v22, p457 (1967) *

* Type: NX_FLOAT * Dimensions: 1: 3; 2: 3; *

* * @return the value. */ public Double getOrientation_matrixScalar(); /** * Orientation matrix of single crystal sample component. * This will follow the Busing and Levy convention from Acta.Crysta v22, p457 (1967) *

* Type: NX_FLOAT * Dimensions: 1: 3; 2: 3; *

* * @param orientation_matrix the orientation_matrix */ public DataNode setOrientation_matrixScalar(Double orientation_matrix); /** * Mass of sample component *

* Type: NX_FLOAT * Units: NX_MASS *

* * @return the value. */ public IDataset getMass(); /** * Mass of sample component *

* Type: NX_FLOAT * Units: NX_MASS *

* * @param mass the mass */ public DataNode setMass(IDataset mass); /** * Mass of sample component *

* Type: NX_FLOAT * Units: NX_MASS *

* * @return the value. */ public Double getMassScalar(); /** * Mass of sample component *

* Type: NX_FLOAT * Units: NX_MASS *

* * @param mass the mass */ public DataNode setMassScalar(Double mass); /** * Density of sample component *

* Type: NX_FLOAT * Units: NX_MASS_DENSITY *

* * @return the value. */ public IDataset getDensity(); /** * Density of sample component *

* Type: NX_FLOAT * Units: NX_MASS_DENSITY *

* * @param density the density */ public DataNode setDensity(IDataset density); /** * Density of sample component *

* Type: NX_FLOAT * Units: NX_MASS_DENSITY *

* * @return the value. */ public Double getDensityScalar(); /** * Density of sample component *

* Type: NX_FLOAT * Units: NX_MASS_DENSITY *

* * @param density the density */ public DataNode setDensityScalar(Double density); /** * Relative Molecular Mass of sample component *

* Type: NX_FLOAT * Units: NX_MASS *

* * @return the value. */ public IDataset getRelative_molecular_mass(); /** * Relative Molecular Mass of sample component *

* Type: NX_FLOAT * Units: NX_MASS *

* * @param relative_molecular_mass the relative_molecular_mass */ public DataNode setRelative_molecular_mass(IDataset relative_molecular_mass); /** * Relative Molecular Mass of sample component *

* Type: NX_FLOAT * Units: NX_MASS *

* * @return the value. */ public Double getRelative_molecular_massScalar(); /** * Relative Molecular Mass of sample component *

* Type: NX_FLOAT * Units: NX_MASS *

* * @param relative_molecular_mass the relative_molecular_mass */ public DataNode setRelative_molecular_massScalar(Double relative_molecular_mass); /** * Description of the sample component * * @return the value. */ public IDataset getDescription(); /** * Description of the sample component * * @param description the description */ public DataNode setDescription(IDataset description); /** * Description of the sample component * * @return the value. */ public String getDescriptionScalar(); /** * Description of the sample component * * @param description the description */ public DataNode setDescriptionScalar(String description); /** * Volume fraction of component *

* Type: NX_FLOAT *

* * @return the value. */ public IDataset getVolume_fraction(); /** * Volume fraction of component *

* Type: NX_FLOAT *

* * @param volume_fraction the volume_fraction */ public DataNode setVolume_fraction(IDataset volume_fraction); /** * Volume fraction of component *

* Type: NX_FLOAT *

* * @return the value. */ public Double getVolume_fractionScalar(); /** * Volume fraction of component *

* Type: NX_FLOAT *

* * @param volume_fraction the volume_fraction */ public DataNode setVolume_fractionScalar(Double volume_fraction); /** * Scattering length density of component *

* Type: NX_FLOAT * Units: NX_SCATTERING_LENGTH_DENSITY *

* * @return the value. */ public IDataset getScattering_length_density(); /** * Scattering length density of component *

* Type: NX_FLOAT * Units: NX_SCATTERING_LENGTH_DENSITY *

* * @param scattering_length_density the scattering_length_density */ public DataNode setScattering_length_density(IDataset scattering_length_density); /** * Scattering length density of component *

* Type: NX_FLOAT * Units: NX_SCATTERING_LENGTH_DENSITY *

* * @return the value. */ public Double getScattering_length_densityScalar(); /** * Scattering length density of component *

* Type: NX_FLOAT * Units: NX_SCATTERING_LENGTH_DENSITY *

* * @param scattering_length_density the scattering_length_density */ public DataNode setScattering_length_densityScalar(Double scattering_length_density); /** * In case it is all we know and we want to record/document it *

*

Enumeration:

    *
  • triclinic
  • *
  • monoclinic
  • *
  • orthorhombic
  • *
  • tetragonal
  • *
  • rhombohedral
  • *
  • hexagonal
  • *
  • cubic

*

* * @return the value. */ public IDataset getUnit_cell_class(); /** * In case it is all we know and we want to record/document it *

*

Enumeration:

    *
  • triclinic
  • *
  • monoclinic
  • *
  • orthorhombic
  • *
  • tetragonal
  • *
  • rhombohedral
  • *
  • hexagonal
  • *
  • cubic

*

* * @param unit_cell_class the unit_cell_class */ public DataNode setUnit_cell_class(IDataset unit_cell_class); /** * In case it is all we know and we want to record/document it *

*

Enumeration:

    *
  • triclinic
  • *
  • monoclinic
  • *
  • orthorhombic
  • *
  • tetragonal
  • *
  • rhombohedral
  • *
  • hexagonal
  • *
  • cubic

*

* * @return the value. */ public String getUnit_cell_classScalar(); /** * In case it is all we know and we want to record/document it *

*

Enumeration:

    *
  • triclinic
  • *
  • monoclinic
  • *
  • orthorhombic
  • *
  • tetragonal
  • *
  • rhombohedral
  • *
  • hexagonal
  • *
  • cubic

*

* * @param unit_cell_class the unit_cell_class */ public DataNode setUnit_cell_classScalar(String unit_cell_class); /** * Crystallographic space group * * @return the value. */ public IDataset getSpace_group(); /** * Crystallographic space group * * @param space_group the space_group */ public DataNode setSpace_group(IDataset space_group); /** * Crystallographic space group * * @return the value. */ public String getSpace_groupScalar(); /** * Crystallographic space group * * @param space_group the space_group */ public DataNode setSpace_groupScalar(String space_group); /** * Crystallographic point group, deprecated if space_group present * * @return the value. */ public IDataset getPoint_group(); /** * Crystallographic point group, deprecated if space_group present * * @param point_group the point_group */ public DataNode setPoint_group(IDataset point_group); /** * Crystallographic point group, deprecated if space_group present * * @return the value. */ public String getPoint_groupScalar(); /** * Crystallographic point group, deprecated if space_group present * * @param point_group the point_group */ public DataNode setPoint_groupScalar(String point_group); /** * As a function of Wavelength * * @return the value. */ public NXdata getTransmission(); /** * As a function of Wavelength * * @param transmission the transmission */ public void setTransmission(NXdata transmission); }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy