All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.hw.langchain.agents.agent.Agent Maven / Gradle / Ivy

There is a newer version: 0.2.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.hw.langchain.agents.agent;

import com.hw.langchain.chains.llm.LLMChain;
import com.hw.langchain.schema.AgentAction;
import com.hw.langchain.schema.AgentFinish;
import com.hw.langchain.schema.AgentResult;
import com.hw.langchain.tools.base.BaseTool;

import org.apache.commons.lang3.tuple.Pair;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * Class responsible for calling the language model and deciding the action.
 * 

* This is driven by an LLMChain. The prompt in the LLMChain MUST include * a variable called "agent_scratchpad" where the agent can put its * intermediary work. * * @author HamaWhite */ public abstract class Agent extends BaseSingleActionAgent { private LLMChain llmChain; private List allowedTools; private AgentOutputParser outputParser; public Agent(LLMChain llmChain, List allowedTools, AgentOutputParser outputParser) { this.llmChain = llmChain; this.outputParser = outputParser; this.allowedTools = allowedTools; } public List stop() { return List.of( "\n" + observationPrefix().trim(), "\n\t" + observationPrefix().trim()); } /** * Construct the scratchpad that lets the agent continue its thought process. * * @param intermediateSteps Steps the LLM has taken to date, along with observations * @return str or List[BaseMessage] */ public String constructScratchpad(List> intermediateSteps) { StringBuilder thoughts = new StringBuilder(); for (Pair step : intermediateSteps) { thoughts.append(step.getKey().getLog()); thoughts.append("\n").append(observationPrefix()).append(step.getValue()); thoughts.append("\n").append(llmPrefix()); } return thoughts.toString(); } /** * Validate that appropriate tools are passed in. */ public static void validateTools(List tools) { } @Override public List inputKeys() { return llmChain.inputKeys().stream() .filter(key -> !key.equals("agent_scratchpad")) .toList(); } /** * Prefix to append the observation with. */ public abstract String observationPrefix(); /** * Prefix to append the LLM call with. */ public abstract String llmPrefix(); @Override public AgentResult plan(List> intermediateSteps, Map kwargs) { var fullInputs = getFullInputs(intermediateSteps, kwargs); String fullOutput = llmChain.predict(fullInputs); return outputParser.parse(fullOutput); } /** * Create the full inputs for the LLMChain from intermediate steps. */ public Map getFullInputs(List> intermediateSteps, Map kwargs) { String thoughts = constructScratchpad(intermediateSteps); var newInputs = Map.of("agent_scratchpad", thoughts, "stop", stop()); Map fullInputs = new HashMap<>(kwargs); fullInputs.putAll(newInputs); return fullInputs; } public AgentFinish returnStoppedResponse(String earlyStoppingMethod, List> intermediateSteps, Map kwargs) { if (earlyStoppingMethod.equals("force")) { // `force` just returns a constant string Map returnValues = new HashMap<>(); returnValues.put("output", "Agent stopped due to iteration limit or time limit."); return new AgentFinish(returnValues, ""); } else if (earlyStoppingMethod.equals("generate")) { // Generate does one final forward pass StringBuilder thoughts = new StringBuilder(); for (Pair step : intermediateSteps) { thoughts.append(step.getLeft().getLog()); thoughts.append("\n"); thoughts.append(this.observationPrefix()); thoughts.append(step.getRight()); thoughts.append("\n"); thoughts.append(this.llmPrefix()); } // Adding to the previous steps, we now tell the LLM to make a final pred thoughts.append("\n\nI now need to return a final answer based on the previous steps:"); Map newInputs = new HashMap<>(); newInputs.put("agent_scratchpad", thoughts.toString()); newInputs.put("stop", this.stop()); Map fullInputs = new HashMap<>(kwargs); fullInputs.putAll(newInputs); String fullOutput = this.llmChain.predict(fullInputs); // We try to extract a final answer AgentResult agentResult = this.outputParser.parse(fullOutput); if (agentResult instanceof AgentFinish) { // If we can extract, we send the correct stuff return (AgentFinish) agentResult; } else { // If we can extract, but the tool is not the final tool, we just return the full output return new AgentFinish(Map.of("output", fullOutput), fullOutput); } } else { throw new IllegalArgumentException( String.format( "early_stopping_method should be one of `force` or `generate`, got %s", earlyStoppingMethod)); } } public Map toolRunLoggingKwargs() { Map map = new HashMap<>(); map.put("llm_prefix", llmPrefix()); map.put("observation_prefix", observationPrefix()); return map; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy