com.hw.langchain.llms.openai.OpenAIChat Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.hw.langchain.llms.openai;
import com.hw.langchain.llms.base.BaseLLM;
import com.hw.langchain.schema.BaseMessage;
import com.hw.langchain.schema.Generation;
import com.hw.langchain.schema.LLMResult;
import com.hw.langchain.utils.Utils;
import com.hw.openai.OpenAiClient;
import com.hw.openai.entity.chat.ChatCompletion;
import com.hw.openai.entity.chat.ChatCompletionResp;
import com.hw.openai.entity.chat.Message;
import lombok.Builder;
import lombok.experimental.SuperBuilder;
import java.util.*;
import static com.google.common.base.Preconditions.checkArgument;
/**
* Wrapper around OpenAI Chat large language models.
* @author HamaWhite
*/
@SuperBuilder
public class OpenAIChat extends BaseLLM {
protected OpenAiClient client;
/**
* Model name to use.
*/
@Builder.Default
protected String model = "gpt-3.5-turbo";
/**
* What sampling temperature to use.
*/
@Builder.Default
protected float temperature = 0.7f;
/**
* The maximum number of tokens to generate in the completion.
* -1 returns as many tokens as possible given the prompt and the model's maximal context size.
*/
@Builder.Default
protected int maxTokens = 256;
/**
* Total probability mass of tokens to consider at each step.
*/
@Builder.Default
protected float topP = 1f;
/**
* Penalizes repeated tokens according to frequency.
*/
protected float frequencyPenalty;
/**
* Penalizes repeated tokens.
*/
protected float presencePenalty;
/**
* How many completions to generate for each prompt.
*/
@Builder.Default
protected int n = 1;
/**
* API key for OpenAI.
*/
protected String openaiApiKey;
/**
* Base URL for OpenAI API.
*/
protected String openaiApiBase;
/**
* Organization ID for OpenAI.
*/
protected String openaiOrganization;
/**
* Support explicit proxy for OpenAI
*/
protected String openaiProxy;
/**
* Maximum number of retries to make when generating.
*/
@Builder.Default
protected int maxRetries = 6;
/**
* Series of messages for Chat input.
*/
@Builder.Default
private List prefixMessages = new ArrayList<>();
/**
* Timeout for requests to OpenAI completion API. Default is 10 seconds.
*/
@Builder.Default
protected long requestTimeout = 10;
/**
* Adjust the probability of specific tokens being generated.
*/
protected Map logitBias;
/**
* Whether to stream the results or not.
*/
protected boolean stream;
public OpenAIChat init() {
openaiApiBase = Utils.getOrEnvOrDefault(openaiApiBase, "OPENAI_API_BASE", "");
openaiApiKey = Utils.getOrEnvOrDefault(openaiApiKey, "OPENAI_API_KEY");
openaiOrganization = Utils.getOrEnvOrDefault(openaiOrganization, "OPENAI_ORGANIZATION", "");
openaiProxy = Utils.getOrEnvOrDefault(openaiProxy, "OPENAI_PROXY", "");
this.client = OpenAiClient.builder()
.openaiApiBase(openaiApiBase)
.openaiApiKey(openaiApiKey)
.openaiOrganization(openaiOrganization)
.openaiProxy(openaiProxy)
.requestTimeout(requestTimeout)
.build()
.init();
return this;
}
@Override
public String predict(String text, List stop) {
return null;
}
@Override
public BaseMessage predictMessages(List messages, List stop) {
return null;
}
@Override
public String llmType() {
return "openai-chat";
}
@Override
protected LLMResult _generate(List prompts, List stop) {
List messages = getChatMessages(prompts);
ChatCompletion chatCompletion = ChatCompletion.builder()
.model(model)
.temperature(temperature)
.messages(messages)
.maxTokens(maxTokens)
.topP(topP)
.frequencyPenalty(frequencyPenalty)
.presencePenalty(presencePenalty)
.n(n)
.logitBias(logitBias)
.stop(stop)
.build();
ChatCompletionResp response = client.create(chatCompletion);
List> generations = new ArrayList<>();
Generation generation = Generation.builder()
.text(response.getChoices().get(0).getMessage().getContent())
.build();
generations.add(List.of(generation));
Map llmOutput = new HashMap<>(2);
llmOutput.put("token_usage", response.getUsage());
llmOutput.put("model_name", response.getModel());
return new LLMResult(generations, llmOutput);
}
private List getChatMessages(List prompts) {
checkArgument(prompts.size() == 1, "OpenAIChat currently only supports single prompt, got %s", prompts);
List messages = new ArrayList<>(prefixMessages);
messages.add(Message.of(prompts.get(0)));
return messages;
}
}