All Downloads are FREE. Search and download functionalities are using the official Maven repository.

es.uam.eps.ir.relison.diffusion.selections.BatchRecommenderSelectionMechanism Maven / Gradle / Ivy

The newest version!
/* 
 *  Copyright (C) 2020 Information Retrieval Group at Universidad Autónoma
 *  de Madrid, http://ir.ii.uam.es
 * 
 *  This Source Code Form is subject to the terms of the Mozilla Public
 *  License, v. 2.0. If a copy of the MPL was not distributed with this
 *  file, You can obtain one at http://mozilla.org/MPL/2.0/.
 */
package es.uam.eps.ir.relison.diffusion.selections;

import es.uam.eps.ir.relison.diffusion.data.Data;
import es.uam.eps.ir.relison.diffusion.data.PropagatedInformation;
import es.uam.eps.ir.relison.diffusion.simulation.SimulationEdgeTypes;
import es.uam.eps.ir.relison.diffusion.simulation.SimulationState;
import es.uam.eps.ir.relison.diffusion.simulation.UserState;
import es.uam.eps.ir.relison.graph.edges.EdgeOrientation;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;

/**
 * Selects a set of information pieces to propagate depending on the recommendations. When the user has to propagate
 * information originally owned by other users, it chooses with a given probability information that has arrived from
 * users who have been recommended to him / whom he has been recommended to. In other case, it propagates information
 * received from any other neighbor.
 *
 * The type of neighbor to consider is chosen each iteration, separately.
 *
 * If information from the selected type of users has not been propagated, then, no further information is prpagated.
 * When selecting an information piece to propagate, if the information piece has already been propagated, the turn
 * is skipped.
 *
 * @author Javier Sanz-Cruzado ([email protected])
 * @author Pablo Castells ([email protected])
 *
 * @param  type of the users.
 * @param  type of the information.
 * @param 

type of the parameters. */ public class BatchRecommenderSelectionMechanism extends CountSelectionMechanism { /** * Probability of choosing information to propagate that comes from recommended users. * If there are enough pieces, each time a piece of information is selected, with probability prob that piece will come from recommended * users, and with probability (1-p) the piece will come from an edge in the training graph. */ private final double prob; /** * Neighborhood the information pieces come from. In case of IN, information comes from the followers of the users. In case of OUT (usual) * from the followees. Finally, in case of UND, from any of them. */ private final EdgeOrientation orientation; /** * Constructor. * @param numOwn number of own information pieces to propagate for each user and iteration. * @param numPropagate number of received information to propagate for each user and iteration. * @param prob probability of chosing information to propagate that comes from recommended users. * @param orient neighborhood where the information pieces come from. */ public BatchRecommenderSelectionMechanism(int numOwn, int numPropagate, double prob, EdgeOrientation orient) { super(numOwn,numPropagate,SelectionConstants.NONE); this.prob = prob; this.orientation = orient; } /** * Constructor. * @param numOwn number of own information pieces to propagate for each user and iteration. * @param numPropagate number of received information to propagate for each user and iteration. * @param numRepr number of propagated information pieces to propagate for each user and iteration * @param prob probability of chosing information to propagate that comes from recommended users. * @param orient neighborhood where the information pieces come from. */ public BatchRecommenderSelectionMechanism(int numOwn, int numPropagate, int numRepr, double prob, EdgeOrientation orient) { super(numOwn,numPropagate,numRepr); this.prob = prob; this.orientation = orient; } @Override protected List getReceivedInformation(UserState user, Data data, SimulationState state, int numIter, Long timestamp) { List receivedToPropagate = new ArrayList<>(); List fromNeigh = new ArrayList<>(); List fromRec = new ArrayList<>(); HashSet setInfo = new HashSet<>(); U u = user.getUserId(); int userId = data.getUserIndex().object2idx(u); user.getReceivedInformation().forEach(info -> { List creators = new ArrayList<>(info.getCreators()); List indexesToDelete = new ArrayList<>(); for(int i = 0; i < creators.size();++i) { Integer creator = creators.get(i); if(creator == null) // Checks if the index has to be deleted (null source) { indexesToDelete.add(i); } else { U creatorUser = data.getUserIndex().idx2object(creator); boolean rec = false; if(this.orientation == EdgeOrientation.IN) { if(data.getGraph().getEdgeType(creatorUser, u) == SimulationEdgeTypes.RECOMMEND) rec = true; } else if(this.orientation == EdgeOrientation.OUT) { if(data.getGraph().getEdgeType(u, creatorUser) == SimulationEdgeTypes.RECOMMEND) rec = true; } else { if(data.getGraph().containsEdge(u, creatorUser)) rec = data.getGraph().getEdgeType(u, creatorUser) == SimulationEdgeTypes.RECOMMEND; if(data.getGraph().containsEdge(creatorUser, u)) rec = rec || (data.getGraph().getEdgeType(creatorUser, u) == SimulationEdgeTypes.RECOMMEND); } if(rec) fromRec.add(info.getInfoId()); else fromNeigh.add(info.getInfoId()); } } // Remove the corresponding null sources for(int i = indexesToDelete.size()-1; i >= 0; --i) { creators.remove((int) indexesToDelete.get(i)); System.out.println(creators); } }); double r = rng.nextDouble(); if(r < this.prob) { for(int i = 0; i < Math.min(this.getNumReceived(), fromRec.size()); ++i) { // Decides which information pieces we want to propagate setInfo.add(fromRec.get(rng.nextInt(fromRec.size()))); setInfo.forEach(idx -> receivedToPropagate.add(new PropagatedInformation(idx, numIter, userId))); } } else { for(int i = 0; i < Math.min(this.getNumReceived(), fromNeigh.size()); ++i) { // Decides which information pieces we want to propagate setInfo.add(fromRec.get(rng.nextInt(fromNeigh.size()))); setInfo.forEach(idx -> receivedToPropagate.add(new PropagatedInformation(idx, numIter, userId))); } } return receivedToPropagate; } }