All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.librec.eval.fairness.OverestimationUnfairnessEvaluator Maven / Gradle / Ivy

The newest version!
/**
 * Copyright (C) 2016 LibRec
 * 

* This file is part of LibRec. * LibRec is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. *

* LibRec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. *

* You should have received a copy of the GNU General Public License * along with LibRec. If not, see . */ package net.librec.eval.fairness; import com.google.common.collect.BiMap; import net.librec.eval.AbstractRecommenderEvaluator; import net.librec.math.structure.SequentialAccessSparseMatrix; import net.librec.recommender.item.KeyValue; import net.librec.recommender.item.RecommendedList; import org.apache.commons.lang.StringUtils; import java.util.ArrayList; import java.util.Collections; import java.util.List; /** * Overestimation Unfairness Evaluator is based on the method proposed by * Sirui Yao and Bert Huang, Beyond Parity: Fairness Objective for Collaborative Filtering, NIPS 2017
* * consumer-side fairness * * It is important in settings where users may be overwhelmed by recommendations, so too many recoms becomes detrimental. * * @author Nasim Sonboli */ public class OverestimationUnfairnessEvaluator extends AbstractRecommenderEvaluator { /** * item feature matrix - indicating an item is associated to a certain feature or not */ protected SequentialAccessSparseMatrix userFeatureMatrix; protected double overEstimationUnfairness; /** * Evaluate on the test set with the the list of recommended items. * * @param groundTruthList * the given test set * @param recommendedList * the list of recommended items * @return evaluate result */ // public double evaluate(SparseMatrix testMatrix, RecommendedList recommendedList) { public double evaluate(RecommendedList groundTruthList, RecommendedList recommendedList) { if (groundTruthList == null) { return 0.0; } //protected users String protectedAttr = ""; if (conf != null && StringUtils.isNotBlank(conf.get("data.protected.feature"))) { protectedAttr = conf.get("data.protected.feature"); } userFeatureMatrix = getDataModel().getFeatureAppender().getUserFeatures(); BiMap featureIdMapping = getDataModel().getFeatureAppender().getUserFeatureMap(); // int numUsers = userFeatureMatrix.numRows(); // int numFeatures = userFeatureMatrix.numColumns(); // int numItems = testMatrix.numColumns(); int numItems = getDataModel().getItemMappingData().size(); int numUsers = userFeatureMatrix.rowSize(); int numFeatures = userFeatureMatrix.columnSize(); // to avoid getting NaN for cases when no rating or predicted-rating is present, we set the counters to 1. List testItemRatingSumByProUsers = new ArrayList<>(Collections.nCopies(numItems,0.0)); List testProUsersCounter = new ArrayList<>(Collections.nCopies(numItems,1.0)); List testItemRatingSumByUnproUsers = new ArrayList<>(Collections.nCopies(numItems,0.0)); List testUnproUsersCounter = new ArrayList<>(Collections.nCopies(numItems,1.0)); List recItemRatingSumByProUsers = new ArrayList<>(Collections.nCopies(numItems,0.0)); List recProUsersCounter = new ArrayList<>(Collections.nCopies(numItems,1.0)); List recItemRatingSumByUnproUsers = new ArrayList<>(Collections.nCopies(numItems,0.0)); List recUnproUsersCounter = new ArrayList<>(Collections.nCopies(numItems,1.0)); for (int userID = 0; userID < numUsers; userID++) { // is the user from the protected group or not boolean isProtected = false; for (int featureId = 0; featureId < numFeatures; featureId++) { if (userFeatureMatrix.get(userID, featureId) == 1) { if (featureId == featureIdMapping.get(protectedAttr)) { isProtected = true; } else { isProtected = false; } } } // Set testSetByUser = testMatrix.getColumnsSet(userID); List> testListByUser = groundTruthList.getKeyValueListByContext(userID); if (testListByUser.size() > 0) { // iterate through the items in the testMatrix // we calculate this measure over all the items for (int indexOfItem=0; indexOfItem < testListByUser.size(); indexOfItem++) { int itemId = testListByUser.get(indexOfItem).getKey(); double ratingActual = testListByUser.get(indexOfItem).getValue(); if (isProtected) { testItemRatingSumByProUsers.set(itemId, testItemRatingSumByProUsers.get(itemId) + ratingActual); testProUsersCounter.set(itemId, testProUsersCounter.get(itemId) + 1.0); } else { testItemRatingSumByUnproUsers.set(itemId, testItemRatingSumByUnproUsers.get(itemId) + ratingActual); testUnproUsersCounter.set(itemId, testUnproUsersCounter.get(itemId) + 1.0); } } List> recommendListByUser = recommendedList.getKeyValueListByContext(userID); int topK = this.topN <= recommendListByUser.size() ? this.topN : recommendListByUser.size(); // topK or all the recommended items? for (int indexOfItem=0; indexOfItem < topK; indexOfItem++) { int itemId = recommendListByUser.get(indexOfItem).getKey(); double ratingPredicted = recommendListByUser.get(indexOfItem).getValue(); if (isProtected) { recItemRatingSumByProUsers.set(itemId, recItemRatingSumByProUsers.get(itemId) + ratingPredicted); recProUsersCounter.set(itemId, recProUsersCounter.get(itemId) + 1.0); } else { recItemRatingSumByUnproUsers.set(itemId, recItemRatingSumByUnproUsers.get(itemId) + ratingPredicted); recUnproUsersCounter.set(itemId, recUnproUsersCounter.get(itemId) + 1.0); } } } } overEstimationUnfairness = 0.0; double avgRatingPro = 0.0, avgRecPro = 0.0, avgRatingUnpro = 0.0, avgRecUnpro = 0.0; // iterate through the items that has been recommended to each user for (int indexOfItem = 0; indexOfItem < numItems; indexOfItem++) { // some of the items are not rated at all by the protected group and some are not recommended avgRecPro = recItemRatingSumByProUsers.get(indexOfItem) / recProUsersCounter.get(indexOfItem); avgRatingPro = testItemRatingSumByProUsers.get(indexOfItem) / testProUsersCounter.get(indexOfItem); avgRecUnpro = recItemRatingSumByUnproUsers.get(indexOfItem) / recUnproUsersCounter.get(indexOfItem); avgRatingUnpro = testItemRatingSumByUnproUsers.get(indexOfItem) / testUnproUsersCounter.get(indexOfItem); overEstimationUnfairness += Math.abs(Math.max(0.0, avgRecPro - avgRatingPro) - Math.max(0.0, avgRecUnpro - avgRatingUnpro)); } // taking average over all the items overEstimationUnfairness /= numItems; return overEstimationUnfairness; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy