All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.librec.recommender.hybrid.HybridRecommender Maven / Gradle / Ivy

The newest version!
/**
 * Copyright (C) 2016 LibRec
 * 

* This file is part of LibRec. * LibRec is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. *

* LibRec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. *

* You should have received a copy of the GNU General Public License * along with LibRec. If not, see . */ package net.librec.recommender.hybrid; import com.google.common.collect.HashBasedTable; import com.google.common.collect.Sets; import com.google.common.collect.Table; import com.google.common.collect.Tables; import net.librec.common.LibrecException; import net.librec.math.structure.SequentialSparseVector; import net.librec.math.structure.Vector; import net.librec.recommender.MatrixRecommender; import java.util.HashMap; import java.util.Map; import java.util.Set; /** * Zhou et al., Solving the apparent diversity-accuracy dilemma of recommender systems, Proceedings of * the National Academy of Sciences, 2010. * * @author guoguibing and Keqiang Wang */ public class HybridRecommender extends MatrixRecommender { Table userItemRanks = HashBasedTable.create(); protected float lambda; Map itemDegrees = new HashMap<>(); /** * initialization * * @throws LibrecException if error occurs */ @Override protected void setup() throws LibrecException { super.setup(); lambda = conf.getFloat("rec.hybrid.lambda"); for (int itemIdx = 0; itemIdx < numItems; itemIdx++) { itemDegrees.put(itemIdx, trainMatrix.column(itemIdx).size()); } } /** * train model * * @throws LibrecException if error occurs */ @Override protected void trainModel() throws LibrecException { } @Override protected synchronized double predict(int userIdx, int itemIdx) throws LibrecException { // Note that in ranking, we first check a user u, and then check the // ranking score of each candidate items if (!userItemRanks.containsRow(userIdx)) { // new user userItemRanks.clear(); SequentialSparseVector itemRatingsVector = trainMatrix.row(userIdx); Set itemsSet = Sets.newHashSetWithExpectedSize((int) (itemRatingsVector.size() * 1.5)); for (Vector.VectorEntry vectorEntry : itemRatingsVector) { if (vectorEntry.get() != 0.0) { itemsSet.add(vectorEntry.index()); } } // distribute resources to users, including user u Map userResources = new HashMap<>(); for (int tempUserIdx = 0; tempUserIdx < numUsers; tempUserIdx++) { SequentialSparseVector tempItemRatingsVector = trainMatrix.row(tempUserIdx); double sum = 0; int tempItemsCount = tempItemRatingsVector.size(); for (int tempItemIdx : tempItemRatingsVector.getIndices()) { if (itemsSet.contains(tempItemIdx)) sum += 1.0 / Math.pow(itemDegrees.get(tempItemIdx), lambda); } if (tempItemsCount > 0) userResources.put(tempUserIdx, sum / tempItemsCount); } // redistribute resources to items for (int tempItemIdx = 0; tempItemIdx < numItems; tempItemIdx++) { if (itemsSet.contains(tempItemIdx)) continue; SequentialSparseVector tempUserRatingsVector = trainMatrix.column(tempItemIdx); double sum = 0; for (int tempUserIdx : tempUserRatingsVector.getIndices()) sum += userResources.containsKey(tempUserIdx) ? userResources.get(tempUserIdx) : 0.0; double score = sum / Math.pow(itemDegrees.get(tempItemIdx), 1 - lambda); userItemRanks.put(userIdx, tempItemIdx, score); } } return userItemRanks.contains(userIdx, itemIdx) ? userItemRanks.get(userIdx, itemIdx) : 0.0; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy