All Downloads are FREE. Search and download functionalities are using the official Maven repository.

signalprocesser.voronoi.representation.voronoicell.VoronoiCellRepresentation Maven / Gradle / Ivy

Go to download

ModularImageAnalysis (MIA) is an ImageJ plugin which provides a modular framework for assembling image and object analysis workflows. Detected objects can be transformed, filtered, measured and related. Analysis workflows are batch-enabled by default, allowing easy processing of high-content datasets.

There is a newer version: 1.6.12
Show newest version
/*
 * "Concave" hulls by Glenn Hudson and Matt Duckham
 *
 * Source code downloaded from https://archive.md/l3Un5#selection-571.0-587.218 on 3rd November 2021.
 *
 * - This software is Copyright (C) 2008 Glenn Hudson released under Gnu Public License (GPL). Under 
 *   GPL you are free to use, modify, and redistribute the software. Please acknowledge Glenn Hudson 
 *   and Matt Duckham as the source of this software if you do use or adapt the code in further research 
 *   or other work. For full details of GPL see http://www.gnu.org/licenses/gpl-3.0.txt.
 * - This software comes with no warranty of any kind, expressed or implied.
 * 
 * A paper with full details of the characteristic hulls algorithm is published in Pattern Recognition.
 * Duckham, M., Kulik, L., Worboys, M.F., Galton, A. (2008) Efficient generation of simple polygons for
 * characterizing the shape of a set of points in the plane. Pattern Recognition v41, 3224-3236
 *
 * The software was developed by Glenn Hudson while working with me as an RA. The characteristic shapes 
 * algorithm is collaborative work between Matt Duckham, Lars Kulik, Antony Galton, and Mike Worboys.
 * 
 */

package signalprocesser.voronoi.representation.voronoicell;

import java.awt.Graphics2D;
import java.util.Collection;

import signalprocesser.voronoi.VPoint;
import signalprocesser.voronoi.representation.AbstractRepresentation;
import signalprocesser.voronoi.statusstructure.VLinkedNode;
import signalprocesser.voronoi.statusstructure.binarysearchtreeimpl.VInternalNode;
import signalprocesser.voronoi.statusstructure.binarysearchtreeimpl.VLeafNode;

// Note: this implementation is specifically dependant on the
//   binary search tree implementation of the status structure
public class VoronoiCellRepresentation extends AbstractRepresentation {
    
    /* ***************************************************** */
    // Variables
    
    private Collection voronoicells;
    
    /* ***************************************************** */
    // Constructor
    
    public VoronoiCellRepresentation() {
        // do nothing
    }
    
    /* ***************************************************** */
    // Create Point
    
    public VPoint createPoint(int x, int y) {
        return new VVoronoiCell(x, y);
    }
    
    /* ***************************************************** */
    // Data/Representation Interface Method
    
    // Executed before the algorithm begins to process (can be used to
    //   initialise any data structures required)
    public void beginAlgorithm(Collection points) {
        // Remember array of points
        voronoicells = points;
        
        // Reset each VVertex
        for ( VPoint point : points ) {
            VVoronoiCell voronoicell = (VVoronoiCell) point;
            voronoicell.halfedge = null;
            voronoicell.resetArea();
        }
    }
    
    // Called to record that a vertex has been found
    public void siteEvent( VLinkedNode n1 , VLinkedNode n2 , VLinkedNode n3 ) {
        VLeafNode leaf1 = (VLeafNode) n1;
        VLeafNode leaf2 = (VLeafNode) n2;
        VLeafNode leaf3 = (VLeafNode) n3;
        
        VInternalNode parent1 = leaf1.getFirstCommonParent(leaf2);
        VInternalNode parent2 = leaf2.getFirstCommonParent(leaf3);
        
        parent1.halfedge_in  = new VHalfEdge();
        parent1.halfedge_out = new VHalfEdge();
        parent2.halfedge_in  = parent1.halfedge_out;
        parent2.halfedge_out = parent1.halfedge_in;
        
        //tmp.add( parent1.halfedge_in );
        //tmp.add( parent1.halfedge_out );
    }
    public void circleEvent( VLinkedNode n1 , VLinkedNode n2 , VLinkedNode n3 , int circle_x , int circle_y ) {
        VLeafNode leaf1 = (VLeafNode) n1;
        VLeafNode leaf2 = (VLeafNode) n2;
        VLeafNode leaf3 = (VLeafNode) n3;
        
        VInternalNode left  = leaf1.getFirstCommonParent(leaf2);
        VInternalNode right = leaf2.getFirstCommonParent(leaf3);
        VInternalNode down  = leaf1.getFirstCommonParent(leaf3);
        
        VHalfEdge left_in   = (VHalfEdge) left.halfedge_in;
        VHalfEdge left_out  = (VHalfEdge) left.halfedge_out;
        VHalfEdge right_in  = (VHalfEdge) right.halfedge_in;
        VHalfEdge right_out = (VHalfEdge) right.halfedge_out;
        VHalfEdge down_in = new VHalfEdge(circle_x, circle_y);
        VHalfEdge down_out = new VHalfEdge();
        
        down.halfedge_in  = down_in;
        down.halfedge_out = down_out;
        
        if ( left_in!=null ) {
            left_in.setNext( down_in );
            left_out.setXY(circle_x, circle_y);
        }
        if ( right_in!=null ) {
            down_out.setNext( right_out );
            right_out.setXY(circle_x, circle_y);
        }
        if ( left_in!=null && right_in!=null) {
            right_in.setNext( left_out );
        }
        
        VVoronoiCell v1 = (VVoronoiCell) n1.siteevent.getPoint();
        VVoronoiCell v2 = (VVoronoiCell) n2.siteevent.getPoint();
        VVoronoiCell v3 = (VVoronoiCell) n3.siteevent.getPoint();
        if ( v1.halfedge==null ) v1.halfedge = left_in;
        if ( v2.halfedge==null ) v2.halfedge = right_in;
        if ( v3.halfedge==null ) v3.halfedge = down_out;
        
        // Finally, just add to list so we can print it all out easily later
        //tmp.add( down.halfedge_in  ); tmp.add( down.halfedge_out  );
    }
    
    // Called when the algorithm has finished processing
    public void endAlgorithm(Collection points, int lastsweeplineposition, VLinkedNode headnode) {
        // do nothing
    }
    
    /* ***************************************************** */
    // Paint Method
    
    public void paint(Graphics2D g) {
        for ( VPoint point : voronoicells ) {
            VVoronoiCell voronoicell = (VVoronoiCell)point;
            VHalfEdge halfedge = voronoicell.halfedge;
            
            // Print out area
            g.drawString(Double.toString(voronoicell.getAreaOfCell()), voronoicell.x+6, voronoicell.y);
            
            // Draw voronoi cell
            VHalfEdge curr = halfedge;
            if ( halfedge==null || halfedge.getNext()==null ) continue;
            do {
                if (( curr.x==-1 && curr.y==-1 )||( curr.getNext().x==-1 && curr.getNext().y==-1 )) {
                    curr=curr.getNext();
                    continue;
                }
                
                // Draw line
                g.drawLine( curr.x , curr.y , curr.getNext().x , curr.getNext().y );
                
                // Go to next
                curr=curr.getNext();
            } while ( curr.getNext()!=null && curr!=halfedge );
        }
    }
    
    /* ***************************************************** */
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy