io.github.mianalysis.mia.process.math.CumStat Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mia-algorithms Show documentation
Show all versions of mia-algorithms Show documentation
ModularImageAnalysis (MIA) is an ImageJ plugin which provides a modular framework for assembling image and object analysis workflows. Detected objects can be transformed, filtered, measured and related. Analysis workflows are batch-enabled by default, allowing easy processing of high-content datasets.
package io.github.mianalysis.mia.process.math;
// THIS CLASS IS BASED ON THE INCREMENTAL CALCULATION OF WEIGHTED MEAN AND VARIANCE FROM
// http://www-uxsup.csx.cam.ac.uk/~fanf2/hermes/doc/antiforgery/stats.pdf (Accessed 30-06-2016).
import java.util.Collection;
public class CumStat {
public static final int POPULATION = 1;
public static final int SAMPLE = 2;
private double xMean = 0;
private double xVarPop = 0;
private double xVarSamp = 0;
private double n = 0;
private double wSum = 0;
private double S = 0;
private double xSum = 0;
private double xMin = Double.MAX_VALUE;
private double xMax = -Double.MAX_VALUE;
public CumStat() {
}
public CumStat(double[] vals) {
for (double val:vals) addMeasure(val);
}
public CumStat(float[] vals) {
for (float val:vals) addMeasure(val);
}
public CumStat(double[] vals, boolean ignoreZeroes) {
for (double val:vals) addMeasure(val,ignoreZeroes);
}
public CumStat(float[] vals, boolean ignoreZeroes) {
for (float val:vals) addMeasure(val,ignoreZeroes);
}
public CumStat(double[] vals, double[] weights) {
for (int i=0;i vals) {
for (double val:vals) addMeasure(val);
}
public synchronized void addMeasure(double xIn) {
addMeasure(xIn, 1, false);
}
public synchronized void addMeasure(double xIn, boolean ignoreZeroes) {
addMeasure(xIn, 1, ignoreZeroes);
}
public synchronized void addMeasure(double xIn, double w) {
addMeasure(xIn, w, false);
}
public synchronized void addMeasure(double xIn, double w, boolean ignoreZeroes) {
if(ignoreZeroes & xIn == 0) {
xIn = 0 / 0.0;
}
if(!Double.isNaN(xIn) & w != 0) {
++n;
xSum += xIn;
wSum += w;
double x_mean_prev = xMean;
xMean += w / wSum * (xIn - xMean);
S += w * (xIn - x_mean_prev) * (xIn - xMean);
xVarPop = S / wSum;
xVarSamp = S / (wSum - 1);
if(xIn < xMin) {
xMin = xIn;
}
if(xIn > xMax) {
xMax = xIn;
}
}
}
public synchronized void addMeasures(double[] xIn) {
for(int i = 0; i < xIn.length; ++i) addMeasure(xIn[i], 1);
}
public synchronized void addMeasures(float[] xIn) {
for(int i = 0; i < xIn.length; ++i) addMeasure(xIn[i], 1);
}
public synchronized void addMeasures(double[] xIn, double[] w) {
for(int i = 0; i < xIn.length; ++i) addMeasure(xIn[i], w[i]);
}
public synchronized void addMeasures(float[] xIn, float[] w) {
for(int i = 0; i < xIn.length; ++i) addMeasure(xIn[i], w[i]);
}
public synchronized double getMean() {
return n == 0 ? Double.NaN : xMean;
}
public synchronized double getSum() {
return n == 0 ? Double.NaN : xSum;
}
public synchronized double getVar() {
return n == 0 ? Double.NaN : xVarSamp;
}
public synchronized double getVar(int mode) {
if (n == 0) return Double.NaN;
return mode == 2?xVarSamp:(mode == 1?xVarPop:0);
}
public synchronized double getStd() {
return n == 0 ? Double.NaN : getStd(2);
}
public synchronized double getStd(int mode) {
if (n == 0) return Double.NaN;
return mode == 2?Math.sqrt(xVarSamp):(mode == 1?Math.sqrt(xVarPop):0);
}
public synchronized double getN() {
return n;
}
public synchronized double getMin() {
return n == 0 ? Double.NaN : xMin;
}
public synchronized double getMax() {
return n == 0 ? Double.NaN : xMax;
}
public synchronized double getWeight() {
return n == 0 ? Double.NaN : wSum;
}
}