All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.github.mianalysis.mia.module.images.process.binary.DistanceMap Maven / Gradle / Ivy

Go to download

ModularImageAnalysis (MIA) is an ImageJ plugin which provides a modular framework for assembling image and object analysis workflows. Detected objects can be transformed, filtered, measured and related. Analysis workflows are batch-enabled by default, allowing easy processing of high-content datasets.

There is a newer version: 1.6.12
Show newest version
package io.github.mianalysis.mia.module.images.process.binary;

import org.scijava.Priority;
import org.scijava.plugin.Plugin;

import ij.IJ;
import ij.ImagePlus;
import ij.ImageStack;
import ij.measure.Calibration;
import ij.plugin.Resizer;
import ij.plugin.SubHyperstackMaker;
import inra.ijpb.binary.distmap.ChamferDistanceTransform3DFloat;
import inra.ijpb.binary.distmap.ChamferMask3D;
import inra.ijpb.binary.distmap.ChamferMasks3D;
import io.github.mianalysis.mia.module.Categories;
import io.github.mianalysis.mia.module.Category;
import io.github.mianalysis.mia.module.Module;
import io.github.mianalysis.mia.module.Modules;
import io.github.mianalysis.mia.module.images.process.ImageMath;
import io.github.mianalysis.mia.module.images.process.ImageTypeConverter;
import io.github.mianalysis.mia.module.images.process.InvertIntensity;
import io.github.mianalysis.mia.module.images.transform.InterpolateZAxis;
import io.github.mianalysis.mia.object.Workspace;
import io.github.mianalysis.mia.object.image.Image;
import io.github.mianalysis.mia.object.image.ImageFactory;
import io.github.mianalysis.mia.object.parameters.BooleanP;
import io.github.mianalysis.mia.object.parameters.ChoiceP;
import io.github.mianalysis.mia.object.parameters.InputImageP;
import io.github.mianalysis.mia.object.parameters.OutputImageP;
import io.github.mianalysis.mia.object.parameters.Parameters;
import io.github.mianalysis.mia.object.parameters.SeparatorP;
import io.github.mianalysis.mia.object.parameters.choiceinterfaces.BinaryLogicInterface;
import io.github.mianalysis.mia.object.parameters.choiceinterfaces.SpatialUnitsInterface;
import io.github.mianalysis.mia.object.refs.collections.ImageMeasurementRefs;
import io.github.mianalysis.mia.object.refs.collections.MetadataRefs;
import io.github.mianalysis.mia.object.refs.collections.ObjMeasurementRefs;
import io.github.mianalysis.mia.object.refs.collections.ObjMetadataRefs;
import io.github.mianalysis.mia.object.refs.collections.ParentChildRefs;
import io.github.mianalysis.mia.object.refs.collections.PartnerRefs;
import io.github.mianalysis.mia.object.system.Status;

/**
 * Creates a 32-bit greyscale image from an input binary image, where the value
 * of each foreground pixel in the input image is equal to its Euclidean
 * distance to the nearest background pixel. This image will be 8-bit with
 * binary logic determined by the "Binary logic" parameter. The output image
 * will have pixel values of 0 coincident with background pixels in the input
 * image and values greater than zero coincident with foreground pixels. Uses
 * the plugin "MorphoLibJ".
 */
@Plugin(type = Module.class, priority = Priority.LOW, visible = true)
public class DistanceMap extends Module {

    /**
    * 
    */
    public static final String INPUT_SEPARATOR = "Image input/output";

    /**
     * Image from workspace to calculate distance map for. This image will be 8-bit
     * with binary logic determined by the "Binary logic" parameter.
     */
    public static final String INPUT_IMAGE = "Input image";

    /**
     * The output distance map will be saved to the workspace with this name. This
     * image will be 32-bit format.
     */
    public static final String OUTPUT_IMAGE = "Output image";

    /**
    * 
    */
    public static final String DISTANCE_MAP_SEPARATOR = "Distance map controls";

    /**
     * The pre-defined set of weights that are used to compute the 3D distance
     * transform using chamfer approximations of the euclidean metric (descriptions
     * taken from https://ijpb.github.io/MorphoLibJ/javadoc/):
*
    *
  • "Borgefors (3,4,5)" Use weight values of 3 for orthogonal neighbors, 4 * for diagonal neighbors and 5 for cube-diagonals (best approximation for * 3-by-3-by-3 masks).
  • *
  • "Chessboard (1,1,1)" Use weight values of 1 for all neighbours.
  • *
  • "City-Block (1,2,3)" Use weight values of 1 for orthogonal neighbors, 2 * for diagonal neighbors and 3 for cube-diagonals.
  • *
  • "Svensson (3,4,5,7)" Use weight values of 3 for orthogonal neighbors, 4 * for diagonal neighbors, 5 for cube-diagonals and 7 for (2,1,1) shifts. Good * approximation using only four weights, and keeping low value of orthogonal * weight.
  • *
*/ public static final String WEIGHT_MODE = "Weight modes"; /** * When selected, an image is interpolated in Z (so that all pixels are * isotropic) prior to calculation of the distance map. This prevents warping of * the distance map along the Z-axis if XY and Z sampling aren't equal. */ public static final String MATCH_Z_TO_X = "Match Z to XY"; /** * Controls whether spatial values are assumed to be specified in calibrated * units (as defined by the "Input control" parameter "Spatial unit") or pixel * units. */ public static final String SPATIAL_UNITS_MODE = "Spatial units mode"; /** * Controls whether objects are considered to be white (255 intensity) on a * black (0 intensity) background, or black on a white background. */ public static final String BINARY_LOGIC = "Binary logic"; public interface WeightModes { String BORGEFORS = "Borgefors (3,4,5) (Emax = 0.1181)"; String CHESSBOARD = "Chessboard (1,1,1)"; String CITY_BLOCK = "City-Block (1,2,3) (Emax = 0.2679)"; String QUASI_EUCLIDEAN = "Quasi-Euclidean (1,1.41,1.73)"; String WEIGHTS_3_4_5_7 = "Svensson (3,4,5,7) (Emax = 0.0809)"; String W8_11_14_18_20 = "8_11_14_18_20 (Emax = 0.0653)"; String W13_18_22_29_31 = "13_18_22_29_31 (Emax = 0.0397)"; String W7_10_12_16_17_21 = "7_10_12_16_17_21 (Emax = 0.0524)"; String W10_14_17_22_34_30 = "10_14_17_22_34_30 (Emax = 0.0408)"; String[] ALL = new String[] { BORGEFORS, CHESSBOARD, CITY_BLOCK, QUASI_EUCLIDEAN, WEIGHTS_3_4_5_7, W8_11_14_18_20, W13_18_22_29_31, W7_10_12_16_17_21, W10_14_17_22_34_30 }; // String[] ALL = new String[] { BORGEFORS, CHESSBOARD, CITY_BLOCK, // WEIGHTS_3_4_5_7 }; } public interface SpatialUnitsModes extends SpatialUnitsInterface { } public interface BinaryLogic extends BinaryLogicInterface { } public DistanceMap(Modules modules) { super("Calculate distance map", modules); } public static ImagePlus process(ImagePlus inputIpl, String outputImageName, boolean blackBackground, String weightMode, boolean matchZToXY, boolean verbose) { return process(ImageFactory.createImage(inputIpl.getTitle(), inputIpl), outputImageName, blackBackground, weightMode, matchZToXY, verbose).getImagePlus(); } public static Image process(Image inputImage, String outputImageName, boolean blackBackground, String weightMode, boolean matchZToXY, boolean verbose) { String name = new DistanceMap(null).getName(); ImagePlus inputIpl = inputImage.getImagePlus(); // Calculating the distance map using MorphoLibJ ChamferMask3D weights = getFloatWeights(weightMode); // Calculating the distance map, one frame at a time int count = 0; int nChannels = inputIpl.getNChannels(); int nFrames = inputIpl.getNFrames(); int nSlices = inputIpl.getNSlices(); // Creating a duplicate of the input image ImagePlus outputIpl = IJ.createHyperStack(inputIpl.getTitle(), inputIpl.getWidth(), inputIpl.getHeight(), inputIpl.getNChannels(), nSlices, nFrames, 32); ImageStack outputIst = outputIpl.getStack(); ChamferDistanceTransform3DFloat transform = new ChamferDistanceTransform3DFloat(weights, true); for (int c = 0; c < nChannels; c++) { for (int t = 0; t < nFrames; t++) { // Getting the mask image at this timepoint ImagePlus currentIpl = SubHyperstackMaker .makeSubhyperstack(inputIpl, String.valueOf(c + 1), "1-" + nSlices, String.valueOf(t + 1)) .duplicate(); currentIpl.setCalibration(inputIpl.getCalibration()); if (!blackBackground) InvertIntensity.process(currentIpl); // If necessary, interpolating the image in Z to match the XY spacing if (matchZToXY && nSlices > 1) currentIpl = InterpolateZAxis.matchZToXY(currentIpl, InterpolateZAxis.InterpolationModes.NONE); ImageStack ist = transform.distanceMap(currentIpl.getStack().duplicate()); currentIpl.setStack(ist); // If the input image as interpolated, it now needs to be returned to the // original scaling if (matchZToXY && nSlices > 1) { Resizer resizer = new Resizer(); resizer.setAverageWhenDownsizing(true); currentIpl = resizer.zScale(currentIpl, nSlices, Resizer.IN_PLACE); } // Putting the image back into the distanceMapImage ImageStack currentIst = currentIpl.getStack(); for (int z = 0; z < currentIpl.getNSlices(); z++) { int currentIdx = currentIpl.getStackIndex(1, z + 1, 1); int outputIdx = outputIpl.getStackIndex(c + 1, z + 1, t + 1); outputIst.setProcessor(currentIst.getProcessor(currentIdx), outputIdx); } if (verbose) writeProgressStatus(++count, nFrames, "timepoints", name); } } outputIpl.setStack(outputIst); outputIpl.setPosition(1, 1, 1); outputIpl.updateAndDraw(); Calibration inputCalibration = inputIpl.getCalibration(); Calibration outputCalibration = new Calibration(); outputCalibration.fps = inputCalibration.fps; outputCalibration.frameInterval = inputCalibration.frameInterval; outputCalibration.pixelDepth = inputCalibration.pixelDepth; outputCalibration.pixelWidth = inputCalibration.pixelWidth; outputCalibration.pixelHeight = inputCalibration.pixelHeight; outputCalibration.setUnit(inputCalibration.getUnit()); outputIpl.setCalibration(outputCalibration); return ImageFactory.createImage(outputImageName, outputIpl); } static ChamferMask3D getFloatWeights(String weightMode) { switch (weightMode) { case WeightModes.BORGEFORS: return ChamferMasks3D.BORGEFORS.getMask(); case WeightModes.CHESSBOARD: return ChamferMasks3D.CHESSBOARD.getMask(); case WeightModes.CITY_BLOCK: return ChamferMasks3D.CITY_BLOCK.getMask(); case WeightModes.QUASI_EUCLIDEAN: return ChamferMasks3D.QUASI_EUCLIDEAN.getMask(); case WeightModes.WEIGHTS_3_4_5_7: return ChamferMask3D.SVENSSON_3_4_5_7; case WeightModes.W8_11_14_18_20: return ChamferMasks3D.WEIGHTS_8_11_14_18_20.getMask(); default: case WeightModes.W13_18_22_29_31: return ChamferMasks3D.WEIGHTS_13_18_22_29_31.getMask(); case WeightModes.W7_10_12_16_17_21: return ChamferMasks3D.WEIGHTS_7_10_12_16_17_21.getMask(); case WeightModes.W10_14_17_22_34_30: return ChamferMasks3D.WEIGHTS_10_14_17_22_34_30.getMask(); } } public static void applyCalibratedUnits(Image inputImage, double dppXY) { ImageTypeConverter.process(inputImage, 32, ImageTypeConverter.ScalingModes.CLIP); ImageMath.process(inputImage, ImageMath.CalculationModes.MULTIPLY, dppXY); } @Override public Category getCategory() { return Categories.IMAGES_PROCESS_BINARY; } @Override public String getVersionNumber() { return "1.0.1"; } @Override public String getDescription() { return "Creates a 32-bit greyscale image from an input binary image, where the value of each foreground pixel in the input image is equal to its Euclidean distance to the nearest background pixel. This image will be 8-bit with binary logic determined by the \"" + BINARY_LOGIC + "\" parameter. The output image will have pixel values of 0 coincident with background pixels in the input image and values greater than zero coincident with foreground pixels. Uses the plugin \"MorphoLibJ\"."; } @Override public Status process(Workspace workspace) { // Getting input image String inputImageName = parameters.getValue(INPUT_IMAGE, workspace); Image inputImage = workspace.getImages().get(inputImageName); // Getting parameters String outputImageName = parameters.getValue(OUTPUT_IMAGE, workspace); String weightMode = parameters.getValue(WEIGHT_MODE, workspace); boolean matchZToXY = parameters.getValue(MATCH_Z_TO_X, workspace); String spatialUnits = parameters.getValue(SPATIAL_UNITS_MODE, workspace); String binaryLogic = parameters.getValue(BINARY_LOGIC, workspace); boolean blackBackground = binaryLogic.equals(BinaryLogic.BLACK_BACKGROUND); // Running distance map Image distanceMap = process(inputImage, outputImageName, blackBackground, weightMode, matchZToXY, true); // Applying spatial calibration if (spatialUnits.equals(SpatialUnitsModes.CALIBRATED)) { double dppXY = inputImage.getImagePlus().getCalibration().pixelWidth; applyCalibratedUnits(distanceMap, dppXY); } // If the image is being saved as a new image, adding it to the workspace writeStatus("Adding image (" + outputImageName + ") to workspace"); workspace.addImage(distanceMap); if (showOutput) distanceMap.show(); return Status.PASS; } @Override protected void initialiseParameters() { parameters.add(new SeparatorP(INPUT_SEPARATOR, this)); parameters.add(new InputImageP(INPUT_IMAGE, this)); parameters.add(new OutputImageP(OUTPUT_IMAGE, this)); parameters.add(new SeparatorP(DISTANCE_MAP_SEPARATOR, this)); parameters.add(new ChoiceP(WEIGHT_MODE, this, WeightModes.W13_18_22_29_31, WeightModes.ALL)); parameters.add(new BooleanP(MATCH_Z_TO_X, this, true)); parameters.add(new ChoiceP(SPATIAL_UNITS_MODE, this, SpatialUnitsModes.PIXELS, SpatialUnitsModes.ALL)); parameters.add(new ChoiceP(BINARY_LOGIC, this, BinaryLogic.BLACK_BACKGROUND, BinaryLogic.ALL)); addParameterDescriptions(); } @Override public Parameters updateAndGetParameters() { return parameters; } @Override public ImageMeasurementRefs updateAndGetImageMeasurementRefs() { return null; } @Override public ObjMeasurementRefs updateAndGetObjectMeasurementRefs() { return null; } @Override public ObjMetadataRefs updateAndGetObjectMetadataRefs() { return null; } @Override public MetadataRefs updateAndGetMetadataReferences() { return null; } @Override public ParentChildRefs updateAndGetParentChildRefs() { return null; } @Override public PartnerRefs updateAndGetPartnerRefs() { return null; } @Override public boolean verify() { return true; } void addParameterDescriptions() { parameters.get(INPUT_IMAGE).setDescription( "Image from workspace to calculate distance map for. This image will be 8-bit with binary logic determined by the \"" + BINARY_LOGIC + "\" parameter."); parameters.get(OUTPUT_IMAGE).setDescription( "The output distance map will be saved to the workspace with this name. This image will be 32-bit format."); parameters.get(WEIGHT_MODE).setDescription( "The pre-defined set of weights that are used to compute the 3D distance transform using chamfer approximations of the euclidean metric (descriptions taken from https://ijpb.github.io/MorphoLibJ/javadoc/):
    " + "
  • \"" + WeightModes.BORGEFORS + "\" Use weight values of 3 for orthogonal neighbors, 4 for diagonal neighbors and 5 for cube-diagonals (best approximation for 3-by-3-by-3 masks).
  • " + "
  • \"" + WeightModes.CHESSBOARD + "\" Use weight values of 1 for all neighbours.
  • " + "
  • \"" + WeightModes.CITY_BLOCK + "\" Use weight values of 1 for orthogonal neighbors, 2 for diagonal neighbors and 3 for cube-diagonals.
  • " + "
  • \"" + WeightModes.WEIGHTS_3_4_5_7 + "\" Use weight values of 3 for orthogonal neighbors, 4 for diagonal neighbors, 5 for cube-diagonals and 7 for (2,1,1) shifts. Good approximation using only four weights, and keeping low value of orthogonal weight.
"); parameters.get(MATCH_Z_TO_X).setDescription( "When selected, an image is interpolated in Z (so that all pixels are isotropic) prior to calculation of the distance map. This prevents warping of the distance map along the Z-axis if XY and Z sampling aren't equal."); parameters.get(SPATIAL_UNITS_MODE).setDescription(SpatialUnitsInterface.getDescription()); parameters.get(BINARY_LOGIC).setDescription(BinaryLogicInterface.getDescription()); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy