All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.github.mianalysis.mia.module.objects.transform.MaskObjects Maven / Gradle / Ivy

Go to download

ModularImageAnalysis (MIA) is an ImageJ plugin which provides a modular framework for assembling image and object analysis workflows. Detected objects can be transformed, filtered, measured and related. Analysis workflows are batch-enabled by default, allowing easy processing of high-content datasets.

There is a newer version: 1.6.12
Show newest version
package io.github.mianalysis.mia.module.objects.transform;

import java.util.HashMap;
import java.util.Iterator;

import org.scijava.Priority;
import org.scijava.plugin.Plugin;

import com.drew.lang.annotations.Nullable;

import io.github.mianalysis.mia.MIA;
import io.github.mianalysis.mia.module.Categories;
import io.github.mianalysis.mia.module.Category;
import io.github.mianalysis.mia.module.Module;
import io.github.mianalysis.mia.module.Modules;
import io.github.mianalysis.mia.module.images.process.InvertIntensity;
import io.github.mianalysis.mia.object.Obj;
import io.github.mianalysis.mia.object.Objs;
import io.github.mianalysis.mia.object.Workspace;
import io.github.mianalysis.mia.object.coordinates.Point;
import io.github.mianalysis.mia.object.coordinates.volume.PointOutOfRangeException;
import io.github.mianalysis.mia.object.image.Image;
import io.github.mianalysis.mia.object.parameters.BooleanP;
import io.github.mianalysis.mia.object.parameters.ChoiceP;
import io.github.mianalysis.mia.object.parameters.InputImageP;
import io.github.mianalysis.mia.object.parameters.InputObjectsP;
import io.github.mianalysis.mia.object.parameters.Parameters;
import io.github.mianalysis.mia.object.parameters.SeparatorP;
import io.github.mianalysis.mia.object.parameters.objects.OutputObjectsP;
import io.github.mianalysis.mia.object.refs.collections.ImageMeasurementRefs;
import io.github.mianalysis.mia.object.refs.collections.MetadataRefs;
import io.github.mianalysis.mia.object.refs.collections.ObjMeasurementRefs;
import io.github.mianalysis.mia.object.refs.collections.ObjMetadataRefs;
import io.github.mianalysis.mia.object.refs.collections.ParentChildRefs;
import io.github.mianalysis.mia.object.refs.collections.PartnerRefs;
import io.github.mianalysis.mia.object.system.Status;
import io.github.mianalysis.mia.process.ColourFactory;
import net.imagej.ImgPlus;
import net.imagej.axis.Axes;
import net.imglib2.RandomAccess;
import net.imglib2.type.NativeType;
import net.imglib2.type.numeric.RealType;
import net.imglib2.type.numeric.integer.UnsignedByteType;

/**
 * Applies the mask image to the specified object collection. Any object
 * coordinates coincident with black pixels (intensity 0) will be removed.
 */
@Plugin(type = Module.class, priority = Priority.LOW, visible = true)
public class MaskObjects & NativeType> extends Module {

    /**
    * 
    */
    public static final String INPUT_SEPARATOR = "Object input/output";

    /**
     * Objects to be masked.
     */
    public static final String INPUT_OBJECTS = "Input objects";

    /**
     * Controls how the masked objects will be stored:
*
    *
  • "Create new objects" (Default) Will add the masked objects to a new * object set and store this set in the workspace.
  • *
  • "Update input objects" Will replace the coordinates of the input object * with the masked coordinates. All measurements associated with input objects * will be transferred to the masked objects.
  • *
*/ public static final String OBJECT_OUTPUT_MODE = "Output object mode"; /** * Name for the output masked objects to be stored in workspace. */ public static final String OUTPUT_OBJECTS = "Output objects"; /** * */ public static final String MASK_SEPARATOR = "Mask options"; /** * Controls whether the input objects will be masked by an image or an object * collection:
*
    *
  • "Mask from image" (Default) Input objects will be masked based on the * image specified by "Mask image". Any object regions coincident with black * pixels (0 pixel intensity) will be removed.
  • *
  • "Mask from objects (remove overlap)" Input objects will be masked based * on all objects of the collection specified by "Mask objects". Any object * regions coincident with any objects in the masking collection will be * removed. The masking objects will be unaffected by this process.
  • *
  • "Mask from objects (retain overlap)" Input objects will be masked based * on all objects of the collection specified by "Mask objects". Any object * regions not coincident with any objects in the masking collection will be * removed. The masking objects will be unaffected by this process.
  • *
*/ public static final String MASK_MODE = "Mask mode"; /** * Object collection to use as mask on input objects. Depending on which * object-masking mode is selected, the input objects will either have * coordinates coincident with these objects removed or retained. */ public static final String MASK_OBJECTS = "Mask objects"; /** * Image to use as mask on input objects. Object coordinates coincident with * black pixels (pixel intensity = 0) are removed. */ public static final String MASK_IMAGE = "Mask image"; /** * When selected, any objects which have no volume following masking will be * removed. */ public static final String REMOVE_EMPTY_OBJECTS = "Remove empty objects"; public interface MaskModes { String MASK_FROM_IMAGE = "Mask from image"; String MASK_FROM_OBJECTS_REMOVE_OVERLAP = "Mask from objects (remove overlap)"; String MASK_FROM_OBJECTS_RETAIN_OVERLAP = "Mask from objects (retain overlap)"; String[] ALL = new String[] { MASK_FROM_IMAGE, MASK_FROM_OBJECTS_REMOVE_OVERLAP, MASK_FROM_OBJECTS_RETAIN_OVERLAP }; } public interface OutputModes { String CREATE_NEW_OBJECT = "Create new objects"; String UPDATE_INPUT = "Update input objects"; String[] ALL = new String[] { CREATE_NEW_OBJECT, UPDATE_INPUT }; } public static Objs maskObjects(Objs inputObjects, Image maskImage, @Nullable String outputObjectsName, boolean removeEmptyObjects, boolean verbose) { String moduleName = new MaskObjects<>(null).getName(); String outputMode = outputObjectsName == null ? OutputModes.UPDATE_INPUT : OutputModes.CREATE_NEW_OBJECT; Objs outputObjects = outputObjectsName == null ? null : new Objs(outputObjectsName, inputObjects); // Iterating over all objects int count = 1; int total = inputObjects.size(); for (Obj inputObject : inputObjects.values()) { Obj outputObject = maskObject(inputObject, maskImage, outputObjectsName); switch (outputMode) { case OutputModes.CREATE_NEW_OBJECT: outputObjects.add(outputObject); outputObject.setObjectCollection(outputObjects); inputObject.addChild(outputObject); outputObject.addParent(inputObject); break; case OutputModes.UPDATE_INPUT: inputObject.getCoordinateSet().clear(); inputObject.setCoordinateSet(outputObject.getCoordinateSet()); inputObject.clearSurface(); inputObject.clearCentroid(); inputObject.clearProjected(); inputObject.clearROIs(); break; } if (verbose) writeProgressStatus(count++, total, "objects", moduleName); } // Removing any objects which now have no volume if (removeEmptyObjects) { Iterator iterator = inputObjects.values().iterator(); while (iterator.hasNext()) if (iterator.next().getCoordinateSet().size() == 0) iterator.remove(); } return outputObjects; } public static & NativeType> Obj maskObject(Obj inputObject, Image maskImage, String maskObjectsName) { Objs tempObjects = new Objs(maskObjectsName, inputObject.getObjectCollection()); // Creating the mask object Obj maskObject = tempObjects.createAndAddNewObject(inputObject.getVolumeType(), inputObject.getID()); maskObject.setT(inputObject.getT()); ImgPlus maskImg = maskImage.getImgPlus(); RandomAccess randomAccess = maskImg.randomAccess(); int xAx = maskImg.dimensionIndex(Axes.X); int yAx = maskImg.dimensionIndex(Axes.Y); int cAx = maskImg.dimensionIndex(Axes.CHANNEL); int zAx = maskImg.dimensionIndex(Axes.Z); int tAx = maskImg.dimensionIndex(Axes.TIME); // Iterating over all points in the object, retaining all points with non-zero // intensity for (Point point : inputObject.getCoordinateSet()) { long[] location = new long[maskImg.numDimensions()]; if (xAx != -1) location[xAx] = point.getX(); if (yAx != -1) location[yAx] = point.getY(); if (cAx != -1) location[cAx] = 0; if (zAx != -1) location[zAx] = point.getZ(); if (tAx != -1) location[tAx] = inputObject.getT(); int value = ((UnsignedByteType) randomAccess.setPositionAndGet(location)).get(); if (value != 0) { try { maskObject.add(point); } catch (PointOutOfRangeException e) { } } } return maskObject; } public MaskObjects(Modules modules) { super("Mask objects", modules); } @Override public Category getCategory() { return Categories.OBJECTS_TRANSFORM; } @Override public String getVersionNumber() { return "1.0.0"; } @Override public String getDescription() { return "Applies the mask image to the specified object collection. Any object coordinates coincident with black " + "pixels (intensity 0) will be removed."; } @Override protected Status process(Workspace workspace) { // Getting parameters String inputObjectsName = parameters.getValue(INPUT_OBJECTS, workspace); String maskMode = parameters.getValue(MASK_MODE, workspace); String maskObjectsName = parameters.getValue(MASK_OBJECTS, workspace); String maskImageName = parameters.getValue(MASK_IMAGE, workspace); boolean removeEmptyObjects = parameters.getValue(REMOVE_EMPTY_OBJECTS, workspace); String outputMode = parameters.getValue(OBJECT_OUTPUT_MODE, workspace); String outputObjectsName = parameters.getValue(OUTPUT_OBJECTS, workspace); Objs inputObjects = workspace.getObjects(inputObjectsName); if (outputMode.equals(OutputModes.UPDATE_INPUT)) outputObjectsName = null; // If masking by objects, converting mask objects to an image Image maskImage; switch (maskMode) { default: MIA.log.writeWarning("Mask not found"); return Status.FAIL; case MaskModes.MASK_FROM_IMAGE: maskImage = workspace.getImage(maskImageName); break; case MaskModes.MASK_FROM_OBJECTS_REMOVE_OVERLAP: case MaskModes.MASK_FROM_OBJECTS_RETAIN_OVERLAP: Objs maskObjects = workspace.getObjects(maskObjectsName); HashMap hues = ColourFactory.getSingleColourValues(maskObjects, ColourFactory.SingleColours.WHITE); maskImage = maskObjects.convertToImage("Mask", hues, 8, false); if (maskMode.equals(MaskModes.MASK_FROM_OBJECTS_REMOVE_OVERLAP)) InvertIntensity.process(maskImage); break; } Objs outputObjects = maskObjects(inputObjects, maskImage, outputObjectsName, removeEmptyObjects, removeEmptyObjects); switch (outputMode) { case OutputModes.CREATE_NEW_OBJECT: workspace.addObjects(outputObjects); if (showOutput) outputObjects.convertToImageIDColours().show(false); break; case OutputModes.UPDATE_INPUT: if (showOutput) inputObjects.convertToImageIDColours().show(false); break; } return Status.PASS; } @Override protected void initialiseParameters() { parameters.add(new SeparatorP(INPUT_SEPARATOR, this)); parameters.add(new InputObjectsP(INPUT_OBJECTS, this)); parameters.add(new ChoiceP(OBJECT_OUTPUT_MODE, this, OutputModes.CREATE_NEW_OBJECT, OutputModes.ALL)); parameters.add(new OutputObjectsP(OUTPUT_OBJECTS, this)); parameters.add(new SeparatorP(MASK_SEPARATOR, this)); parameters.add(new ChoiceP(MASK_MODE, this, MaskModes.MASK_FROM_IMAGE, MaskModes.ALL)); parameters.add(new InputObjectsP(MASK_OBJECTS, this)); parameters.add(new InputImageP(MASK_IMAGE, this)); parameters.add(new BooleanP(REMOVE_EMPTY_OBJECTS, this, false)); addParameterDescriptions(); } @Override public Parameters updateAndGetParameters() { Workspace workspace = null; Parameters returnedParameters = new Parameters(); returnedParameters.add(parameters.getParameter(INPUT_SEPARATOR)); returnedParameters.add(parameters.getParameter(INPUT_OBJECTS)); returnedParameters.add(parameters.getParameter(OBJECT_OUTPUT_MODE)); switch ((String) parameters.getValue(OBJECT_OUTPUT_MODE, workspace)) { case OutputModes.CREATE_NEW_OBJECT: returnedParameters.add(parameters.getParameter(OUTPUT_OBJECTS)); break; } returnedParameters.add(parameters.getParameter(MASK_SEPARATOR)); returnedParameters.add(parameters.getParameter(MASK_MODE)); switch ((String) parameters.getValue(MASK_MODE, workspace)) { case MaskModes.MASK_FROM_IMAGE: returnedParameters.add(parameters.getParameter(MASK_IMAGE)); break; case MaskModes.MASK_FROM_OBJECTS_REMOVE_OVERLAP: case MaskModes.MASK_FROM_OBJECTS_RETAIN_OVERLAP: returnedParameters.add(parameters.getParameter(MASK_OBJECTS)); break; } return returnedParameters; } @Override public ImageMeasurementRefs updateAndGetImageMeasurementRefs() { return null; } @Override public ObjMeasurementRefs updateAndGetObjectMeasurementRefs() { return null; } @Override public ObjMetadataRefs updateAndGetObjectMetadataRefs() { return null; } @Override public MetadataRefs updateAndGetMetadataReferences() { return null; } @Override public ParentChildRefs updateAndGetParentChildRefs() { Workspace workspace = null; ParentChildRefs returnedRelationships = new ParentChildRefs(); switch ((String) parameters.getValue(OBJECT_OUTPUT_MODE, workspace)) { case OutputModes.CREATE_NEW_OBJECT: String inputObjectsName = parameters.getValue(INPUT_OBJECTS, workspace); String outputObjectsName = parameters.getValue(OUTPUT_OBJECTS, workspace); returnedRelationships.add(parentChildRefs.getOrPut(inputObjectsName, outputObjectsName)); break; } return returnedRelationships; } @Override public PartnerRefs updateAndGetPartnerRefs() { return null; } @Override public boolean verify() { return true; } void addParameterDescriptions() { parameters.get(INPUT_OBJECTS).setDescription("Objects to be masked."); parameters.get(OBJECT_OUTPUT_MODE).setDescription("Controls how the masked objects will be stored:
    " + "
  • \"" + OutputModes.CREATE_NEW_OBJECT + "\" (Default) Will add the masked objects to a new object set and store this set in the workspace.
  • " + "
  • \"" + OutputModes.UPDATE_INPUT + "\" Will replace the coordinates of the input object with the masked coordinates. All measurements associated with input objects will be transferred to the masked objects.
"); parameters.get(OUTPUT_OBJECTS).setDescription("Name for the output masked objects to be stored in workspace."); parameters.get(MASK_MODE).setDescription( "Controls whether the input objects will be masked by an image or an object collection:
    " + "
  • \"" + MaskModes.MASK_FROM_IMAGE + "\" (Default) Input objects will be masked based on the image specified by \"" + MASK_IMAGE + "\". Any object regions coincident with black pixels (0 pixel intensity) will be removed.
  • " + "
  • \"" + MaskModes.MASK_FROM_OBJECTS_REMOVE_OVERLAP + "\" Input objects will be masked based on all objects of the collection specified by \"" + MASK_OBJECTS + "\". Any object regions coincident with any objects in the masking collection will be removed. The masking objects will be unaffected by this process.
  • " + "
  • \"" + MaskModes.MASK_FROM_OBJECTS_RETAIN_OVERLAP + "\" Input objects will be masked based on all objects of the collection specified by \"" + MASK_OBJECTS + "\". Any object regions not coincident with any objects in the masking collection will be removed. The masking objects will be unaffected by this process.
"); parameters.get(MASK_IMAGE).setDescription( "Image to use as mask on input objects. Object coordinates coincident with black pixels (pixel intensity = 0) are removed."); parameters.get(MASK_OBJECTS).setDescription( "Object collection to use as mask on input objects. Depending on which object-masking mode is selected, the input objects will either have coordinates coincident with these objects removed or retained."); parameters.get(REMOVE_EMPTY_OBJECTS).setDescription( "When selected, any objects which have no volume following masking will be removed."); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy