All Downloads are FREE. Search and download functionalities are using the official Maven repository.

maltcms.math.functions.similarities.ArrayWeightedCosine Maven / Gradle / Ivy

Go to download

Similarities for Feature Vectors and Time Series thereof, such as Cosine and Dynamic Time Warping.

The newest version!
/*
 * Maltcms, modular application toolkit for chromatography-mass spectrometry.
 * Copyright (C) 2008-2014, The authors of Maltcms. All rights reserved.
 *
 * Project website: http://maltcms.sf.net
 *
 * Maltcms may be used under the terms of either the
 *
 * GNU Lesser General Public License (LGPL)
 * http://www.gnu.org/licenses/lgpl.html
 *
 * or the
 *
 * Eclipse Public License (EPL)
 * http://www.eclipse.org/org/documents/epl-v10.php
 *
 * As a user/recipient of Maltcms, you may choose which license to receive the code
 * under. Certain files or entire directories may not be covered by this
 * dual license, but are subject to licenses compatible to both LGPL and EPL.
 * License exceptions are explicitly declared in all relevant files or in a
 * LICENSE file in the relevant directories.
 *
 * Maltcms is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. Please consult the relevant license documentation
 * for details.
 */
package maltcms.math.functions.similarities;

import cross.cache.ICacheDelegate;
import lombok.Data;
import lombok.EqualsAndHashCode;
import maltcms.math.functions.IArraySimilarity;
import net.jcip.annotations.NotThreadSafe;
import org.openide.util.lookup.ServiceProvider;
import ucar.ma2.Array;
import ucar.ma2.MAMath;

/**
 * 

ArrayWeightedCosine class.

* * @author Nils Hoffmann * */ @Data @EqualsAndHashCode @ServiceProvider(service = IArraySimilarity.class) @NotThreadSafe public class ArrayWeightedCosine implements IArraySimilarity { private transient final ICacheDelegate cache; private double minimumSimilarity = 0.0d; /** *

Constructor for ArrayWeightedCosine.

*/ public ArrayWeightedCosine() { cache = SimilarityTools.newValueCache("ArrayWeightedCosineCache"); } private double getMaximumIntensity(final Array a) { Double d = cache.get(a); if (d == null) { d = MAMath.getMaximum(a); cache.put(a, d); return d; } return d; } /** {@inheritDoc} */ @Override public double apply(final Array t1, final Array t2) { final double maxI1 = getMaximumIntensity(t1); final double maxI2 = getMaximumIntensity(t2); double s1 = 0, s2 = 0, c = 0; for (int i = 0; i < t1.getShape()[0]; i++) { s1 += miProduct(i + 1, t1.getDouble(i) / maxI1); s2 += miProduct(i + 1, t2.getDouble(i) / maxI2); c += miProduct(i + 1, Math.sqrt(t1.getDouble(i) / maxI1 * t2.getDouble(i) / maxI2)); } final double val = (c * c / (s1 * s2)); return val > minimumSimilarity ? val : Double.NEGATIVE_INFINITY; } private double miProduct(double mass, double intensity) { return mass * mass * intensity; } /** {@inheritDoc} */ @Override public IArraySimilarity copy() { ArrayWeightedCosine alp = new ArrayWeightedCosine(); alp.setMinimumSimilarity(getMinimumSimilarity()); return alp; } /** {@inheritDoc} */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append(getClass().getSimpleName()).append("{" + "}"); return sb.toString(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy