All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bukkit.util.noise.SimplexNoiseGenerator Maven / Gradle / Ivy

The newest version!
package org.bukkit.util.noise;

import org.bukkit.World;

import java.util.Random;

/**
 * Generates simplex-based noise.
 * 

* This is a modified version of the freely published version in the paper by * Stefan Gustavson at * * http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf */ public class SimplexNoiseGenerator extends PerlinNoiseGenerator { protected static final double SQRT_3 = Math.sqrt(3); protected static final double SQRT_5 = Math.sqrt(5); protected static final double F2 = 0.5 * (SQRT_3 - 1); protected static final double G2 = (3 - SQRT_3) / 6; protected static final double G22 = G2 * 2.0 - 1; protected static final double F3 = 1.0 / 3.0; protected static final double G3 = 1.0 / 6.0; protected static final double F4 = (SQRT_5 - 1.0) / 4.0; protected static final double G4 = (5.0 - SQRT_5) / 20.0; protected static final double G42 = G4 * 2.0; protected static final double G43 = G4 * 3.0; protected static final double G44 = G4 * 4.0 - 1.0; protected static final int[][] grad4 = {{0, 1, 1, 1}, {0, 1, 1, -1}, {0, 1, -1, 1}, {0, 1, -1, -1}, {0, -1, 1, 1}, {0, -1, 1, -1}, {0, -1, -1, 1}, {0, -1, -1, -1}, {1, 0, 1, 1}, {1, 0, 1, -1}, {1, 0, -1, 1}, {1, 0, -1, -1}, {-1, 0, 1, 1}, {-1, 0, 1, -1}, {-1, 0, -1, 1}, {-1, 0, -1, -1}, {1, 1, 0, 1}, {1, 1, 0, -1}, {1, -1, 0, 1}, {1, -1, 0, -1}, {-1, 1, 0, 1}, {-1, 1, 0, -1}, {-1, -1, 0, 1}, {-1, -1, 0, -1}, {1, 1, 1, 0}, {1, 1, -1, 0}, {1, -1, 1, 0}, {1, -1, -1, 0}, {-1, 1, 1, 0}, {-1, 1, -1, 0}, {-1, -1, 1, 0}, {-1, -1, -1, 0}}; protected static final int[][] simplex = { {0, 1, 2, 3}, {0, 1, 3, 2}, {0, 0, 0, 0}, {0, 2, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 3, 0}, {0, 2, 1, 3}, {0, 0, 0, 0}, {0, 3, 1, 2}, {0, 3, 2, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 3, 2, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 0, 3}, {0, 0, 0, 0}, {1, 3, 0, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 3, 0, 1}, {2, 3, 1, 0}, {1, 0, 2, 3}, {1, 0, 3, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 0, 3, 1}, {0, 0, 0, 0}, {2, 1, 3, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 0, 1, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {3, 0, 1, 2}, {3, 0, 2, 1}, {0, 0, 0, 0}, {3, 1, 2, 0}, {2, 1, 0, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {3, 1, 0, 2}, {0, 0, 0, 0}, {3, 2, 0, 1}, {3, 2, 1, 0}}; private static final SimplexNoiseGenerator instance = new SimplexNoiseGenerator(); protected static double offsetW; protected SimplexNoiseGenerator() { super(); } /** * Creates a seeded simplex noise generator for the given world * * @param world World to construct this generator for */ public SimplexNoiseGenerator(World world) { this(new Random(world.getSeed())); } /** * Creates a seeded simplex noise generator for the given seed * * @param seed Seed to construct this generator for */ public SimplexNoiseGenerator(long seed) { this(new Random(seed)); } /** * Creates a seeded simplex noise generator with the given Random * * @param rand Random to construct with */ public SimplexNoiseGenerator(Random rand) { super(rand); offsetW = rand.nextDouble() * 256; } protected static double dot(int[] g, double x, double y) { return g[0] * x + g[1] * y; } protected static double dot(int[] g, double x, double y, double z) { return g[0] * x + g[1] * y + g[2] * z; } protected static double dot(int[] g, double x, double y, double z, double w) { return g[0] * x + g[1] * y + g[2] * z + g[3] * w; } /** * Computes and returns the 1D unseeded simplex noise for the given * coordinates in 1D space * * @param xin X coordinate * @return Noise at given location, from range -1 to 1 */ public static double getNoise(double xin) { return instance.noise(xin); } /** * Computes and returns the 2D unseeded simplex noise for the given * coordinates in 2D space * * @param xin X coordinate * @param yin Y coordinate * @return Noise at given location, from range -1 to 1 */ public static double getNoise(double xin, double yin) { return instance.noise(xin, yin); } /** * Computes and returns the 3D unseeded simplex noise for the given * coordinates in 3D space * * @param xin X coordinate * @param yin Y coordinate * @param zin Z coordinate * @return Noise at given location, from range -1 to 1 */ public static double getNoise(double xin, double yin, double zin) { return instance.noise(xin, yin, zin); } /** * Computes and returns the 4D simplex noise for the given coordinates in * 4D space * * @param x X coordinate * @param y Y coordinate * @param z Z coordinate * @param w W coordinate * @return Noise at given location, from range -1 to 1 */ public static double getNoise(double x, double y, double z, double w) { return instance.noise(x, y, z, w); } /** * Gets the singleton unseeded instance of this generator * * @return Singleton */ public static SimplexNoiseGenerator getInstance() { return instance; } @Override public double noise(double xin, double yin, double zin) { xin += offsetX; yin += offsetY; zin += offsetZ; double n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D int i = floor(xin + s); int j = floor(yin + s); int k = floor(zin + s); double t = (i + j + k) * G3; double X0 = i - t; // Unskew the cell origin back to (x,y,z) space double Y0 = j - t; double Z0 = k - t; double x0 = xin - X0; // The x,y,z distances from the cell origin double y0 = yin - Y0; double z0 = zin - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0 y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords double y1 = y0 - j1 + G2; double x2 = x0 + G22; // Offsets for last corner in (x,y) unskewed coords double y2 = y0 + G22; // Work out the hashed gradient indices of the three simplex corners int ii = i & 255; int jj = j & 255; int gi0 = perm[ii + perm[jj]] % 12; int gi1 = perm[ii + i1 + perm[jj + j1]] % 12; int gi2 = perm[ii + 1 + perm[jj + 1]] % 12; // Calculate the contribution from the three corners double t0 = 0.5 - x0 * x0 - y0 * y0; if (t0 < 0) { n0 = 0.0; } else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient } double t1 = 0.5 - x1 * x1 - y1 * y1; if (t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1); } double t2 = 0.5 - x2 * x2 - y2 * y2; if (t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70.0 * (n0 + n1 + n2); } /** * Computes and returns the 4D simplex noise for the given coordinates in * 4D space * * @param x X coordinate * @param y Y coordinate * @param z Z coordinate * @param w W coordinate * @return Noise at given location, from range -1 to 1 */ public double noise(double x, double y, double z, double w) { x += offsetX; y += offsetY; z += offsetZ; w += offsetW; double n0, n1, n2, n3, n4; // Noise contributions from the five corners // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in double s = (x + y + z + w) * F4; // Factor for 4D skewing int i = floor(x + s); int j = floor(y + s); int k = floor(z + s); int l = floor(w + s); double t = (i + j + k + l) * G4; // Factor for 4D unskewing double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space double Y0 = j - t; double Z0 = k - t; double W0 = l - t; double x0 = x - X0; // The x,y,z,w distances from the cell origin double y0 = y - Y0; double z0 = z - Z0; double w0 = w - W0; // For the 4D case, the simplex is a 4D shape I won't even try to describe. // To find out which of the 24 possible simplices we're in, we need to // determine the magnitude ordering of x0, y0, z0 and w0. // The method below is a good way of finding the ordering of x,y,z,w and // then find the correct traversal order for the simplex we’re in. // First, six pair-wise comparisons are performed between each possible pair // of the four coordinates, and the results are used to add up binary bits // for an integer index. int c1 = (x0 > y0) ? 32 : 0; int c2 = (x0 > z0) ? 16 : 0; int c3 = (y0 > z0) ? 8 : 0; int c4 = (x0 > w0) ? 4 : 0; int c5 = (y0 > w0) ? 2 : 0; int c6 = (z0 > w0) ? 1 : 0; int c = c1 + c2 + c3 + c4 + c5 + c6; int i1, j1, k1, l1; // The integer offsets for the second simplex corner int i2, j2, k2, l2; // The integer offsets for the third simplex corner int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. // Many values of c will never occur, since e.g. x>y>z>w makes x= 3 ? 1 : 0; j1 = simplex[c][1] >= 3 ? 1 : 0; k1 = simplex[c][2] >= 3 ? 1 : 0; l1 = simplex[c][3] >= 3 ? 1 : 0; // The number 2 in the "simplex" array is at the second largest coordinate. i2 = simplex[c][0] >= 2 ? 1 : 0; j2 = simplex[c][1] >= 2 ? 1 : 0; k2 = simplex[c][2] >= 2 ? 1 : 0; l2 = simplex[c][3] >= 2 ? 1 : 0; // The number 1 in the "simplex" array is at the second smallest coordinate. i3 = simplex[c][0] >= 1 ? 1 : 0; j3 = simplex[c][1] >= 1 ? 1 : 0; k3 = simplex[c][2] >= 1 ? 1 : 0; l3 = simplex[c][3] >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to look that up. double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords double y1 = y0 - j1 + G4; double z1 = z0 - k1 + G4; double w1 = w0 - l1 + G4; double x2 = x0 - i2 + G42; // Offsets for third corner in (x,y,z,w) coords double y2 = y0 - j2 + G42; double z2 = z0 - k2 + G42; double w2 = w0 - l2 + G42; double x3 = x0 - i3 + G43; // Offsets for fourth corner in (x,y,z,w) coords double y3 = y0 - j3 + G43; double z3 = z0 - k3 + G43; double w3 = w0 - l3 + G43; double x4 = x0 + G44; // Offsets for last corner in (x,y,z,w) coords double y4 = y0 + G44; double z4 = z0 + G44; double w4 = w0 + G44; // Work out the hashed gradient indices of the five simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int ll = l & 255; int gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32; int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32; int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32; int gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32; int gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32; // Calculate the contribution from the five corners double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; if (t0 < 0) { n0 = 0.0; } else { t0 *= t0; n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); } double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; if (t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); } double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; if (t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); } double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; if (t3 < 0) { n3 = 0.0; } else { t3 *= t3; n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); } double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; if (t4 < 0) { n4 = 0.0; } else { t4 *= t4; n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); } // Sum up and scale the result to cover the range [-1,1] return 27.0 * (n0 + n1 + n2 + n3 + n4); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy