commonMain.androidx.constraintlayout.core.ArrayLinkedVariables.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of compose-constraint-layout-jvm Show documentation
Show all versions of compose-constraint-layout-jvm Show documentation
A copy of Android's ConstraintLayout (v2.1.3 core and v1.0.0 compose) with multiplatform capability.
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package androidx.constraintlayout.core
import androidx.constraintlayout.core.ArrayRow.ArrayRowVariables
/**
* Store a set of variables and their values in an array-based linked list.
*
* The general idea is that we want to store a list of variables that need to be ordered,
* space efficient, and relatively fast to maintain (add/remove).
*
* ArrayBackedVariables implements a sparse array, so is rather space efficient, but maintaining
* the array sorted is costly, as we spend quite a bit of time recopying parts of the array on element deletion.
*
* LinkedVariables implements a standard linked list structure, and is able to be faster than ArrayBackedVariables
* even though it's more costly to set up (pool of objects...), as the elements removal and maintenance of the
* structure is a lot more efficient.
*
* This ArrayLinkedVariables class takes inspiration from both of the above, and implement a linked list
* stored in several arrays. This allows us to be a lot more efficient in terms of setup (no need to deal with pool
* of objects...), resetting the structure, and insertion/deletion of elements.
*/
class ArrayLinkedVariables internal constructor(// our owner
private val mRow: ArrayRow, // pointer to the system-wide cache, allowing access to SolverVariables
protected val mCache: Cache
) : ArrayRowVariables {
override var currentSize = 0 // current size, accessed by ArrayRow and LinearSystem
private var ROW_SIZE = 8 // default array size
private var candidate: SolverVariable? = null
// mArrayIndices point to indexes in mCache.mIndexedVariables (i.e., the SolverVariables)
private var mArrayIndices = IntArray(ROW_SIZE)
// mArrayNextIndices point to indexes in mArrayIndices
private var mArrayNextIndices = IntArray(ROW_SIZE)
// mArrayValues contain the associated value from mArrayIndices
private var mArrayValues = FloatArray(ROW_SIZE)
// mHead point to indexes in mArrayIndices
var head = NONE
private set
// mLast point to indexes in mArrayIndices
//
// While mDidFillOnce is not set, mLast is simply incremented
// monotonically in order to be sure to traverse the entire array; the idea here is that
// when we clear a linked list, we only set the counters to zero without traversing the array to fill
// it with NONE values, which would be costly.
// But if we do not fill the array with NONE values, we cannot safely simply check if an entry
// is set to NONE to know if we can use it or not, as it might contains a previous value...
// So, when adding elements, we first ensure with this mechanism of mLast/mDidFillOnce
// that we do traverse the array linearly, avoiding for that first pass the need to check for the value
// of the item in mArrayIndices.
// This does mean that removed elements will leave empty spaces, but we /then/ set the removed element
// to NONE, so that once we did that first traversal filling the array, we can safely revert to linear traversal
// finding an empty spot by checking the values of mArrayIndices (i.e. finding an item containing NONE).
private var mLast = NONE
// flag to keep trace if we did a full pass of the array or not, see above description
private var mDidFillOnce = false
/**
* Insert a variable with a given value in the linked list
*
* @param variable the variable to add in the list
* @param value the value of the variable
*/
override fun put(variable: SolverVariable?, value: Float) {
if (value == 0f) {
remove(variable, true)
return
}
// Special casing empty list...
if (head == NONE) {
head = 0
mArrayValues[head] = value
mArrayIndices[head] = variable!!.id
mArrayNextIndices[head] = NONE
variable.usageInRowCount++
variable.addToRow(mRow)
currentSize++
if (!mDidFillOnce) {
// only increment mLast if we haven't done the first filling pass
mLast++
if (mLast >= mArrayIndices.size) {
mDidFillOnce = true
mLast = mArrayIndices.size - 1
}
}
return
}
var current = head
var previous = NONE
var counter = 0
while (current != NONE && counter < currentSize) {
if (mArrayIndices[current] == variable!!.id) {
mArrayValues[current] = value
return
}
if (mArrayIndices[current] < variable.id) {
previous = current
}
current = mArrayNextIndices[current]
counter++
}
// Not found, we need to insert
// First, let's find an available spot
var availableIndice = mLast + 1 // start from the previous spot
if (mDidFillOnce) {
// ... but if we traversed the array once, check the last index, which might have been
// set by an element removed
availableIndice = if (mArrayIndices[mLast] == NONE) {
mLast
} else {
mArrayIndices.size
}
}
if (availableIndice >= mArrayIndices.size) {
if (currentSize < mArrayIndices.size) {
// find an available spot
for (i in mArrayIndices.indices) {
if (mArrayIndices[i] == NONE) {
availableIndice = i
break
}
}
}
}
// ... make sure to grow the array as needed
if (availableIndice >= mArrayIndices.size) {
availableIndice = mArrayIndices.size
ROW_SIZE *= 2
mDidFillOnce = false
mLast = availableIndice - 1
mArrayValues = mArrayValues.copyOf(ROW_SIZE)
mArrayIndices = mArrayIndices.copyOf(ROW_SIZE)
mArrayNextIndices = mArrayNextIndices.copyOf(ROW_SIZE)
}
// Finally, let's insert the element
mArrayIndices[availableIndice] = variable!!.id
mArrayValues[availableIndice] = value
if (previous != NONE) {
mArrayNextIndices[availableIndice] = mArrayNextIndices[previous]
mArrayNextIndices[previous] = availableIndice
} else {
mArrayNextIndices[availableIndice] = head
head = availableIndice
}
variable.usageInRowCount++
variable.addToRow(mRow)
currentSize++
if (!mDidFillOnce) {
// only increment mLast if we haven't done the first filling pass
mLast++
}
if (currentSize >= mArrayIndices.size) {
mDidFillOnce = true
}
if (mLast >= mArrayIndices.size) {
mDidFillOnce = true
mLast = mArrayIndices.size - 1
}
}
/**
* Add value to an existing variable
*
* The code is broadly identical to the put() method, only differing
* in in-line deletion, and of course doing an add rather than a put
* @param variable the variable we want to add
* @param value its value
* @param removeFromDefinition
*/
override fun add(variable: SolverVariable?, value: Float, removeFromDefinition: Boolean) {
if (value > -epsilon && value < epsilon) {
return
}
// Special casing empty list...
if (head == NONE) {
head = 0
mArrayValues[head] = value
mArrayIndices[head] = variable!!.id
mArrayNextIndices[head] = NONE
variable.usageInRowCount++
variable.addToRow(mRow)
currentSize++
if (!mDidFillOnce) {
// only increment mLast if we haven't done the first filling pass
mLast++
if (mLast >= mArrayIndices.size) {
mDidFillOnce = true
mLast = mArrayIndices.size - 1
}
}
return
}
var current = head
var previous = NONE
var counter = 0
while (current != NONE && counter < currentSize) {
val idx = mArrayIndices[current]
if (idx == variable!!.id) {
var v = mArrayValues[current] + value
if (v > -epsilon && v < epsilon) {
v = 0f
}
mArrayValues[current] = v
// Possibly delete immediately
if (v == 0f) {
if (current == head) {
head = mArrayNextIndices[current]
} else {
mArrayNextIndices[previous] = mArrayNextIndices[current]
}
if (removeFromDefinition) {
variable.removeFromRow(mRow)
}
if (mDidFillOnce) {
// If we did a full pass already, remember that spot
mLast = current
}
variable.usageInRowCount--
currentSize--
}
return
}
if (mArrayIndices[current] < variable.id) {
previous = current
}
current = mArrayNextIndices[current]
counter++
}
// Not found, we need to insert
// First, let's find an available spot
var availableIndice = mLast + 1 // start from the previous spot
if (mDidFillOnce) {
// ... but if we traversed the array once, check the last index, which might have been
// set by an element removed
availableIndice = if (mArrayIndices[mLast] == NONE) {
mLast
} else {
mArrayIndices.size
}
}
if (availableIndice >= mArrayIndices.size) {
if (currentSize < mArrayIndices.size) {
// find an available spot
for (i in mArrayIndices.indices) {
if (mArrayIndices[i] == NONE) {
availableIndice = i
break
}
}
}
}
// ... make sure to grow the array as needed
if (availableIndice >= mArrayIndices.size) {
availableIndice = mArrayIndices.size
ROW_SIZE *= 2
mDidFillOnce = false
mLast = availableIndice - 1
mArrayValues = mArrayValues.copyOf(ROW_SIZE)
mArrayIndices = mArrayIndices.copyOf(ROW_SIZE)
mArrayNextIndices = mArrayNextIndices.copyOf(ROW_SIZE)
}
// Finally, let's insert the element
mArrayIndices[availableIndice] = variable!!.id
mArrayValues[availableIndice] = value
if (previous != NONE) {
mArrayNextIndices[availableIndice] = mArrayNextIndices[previous]
mArrayNextIndices[previous] = availableIndice
} else {
mArrayNextIndices[availableIndice] = head
head = availableIndice
}
variable.usageInRowCount++
variable.addToRow(mRow)
currentSize++
if (!mDidFillOnce) {
// only increment mLast if we haven't done the first filling pass
mLast++
}
if (mLast >= mArrayIndices.size) {
mDidFillOnce = true
mLast = mArrayIndices.size - 1
}
}
/**
* Update the current list with a new definition
* @param definition the row containing the definition
* @param removeFromDefinition
*/
override fun use(definition: ArrayRow?, removeFromDefinition: Boolean): Float {
val value = get(definition!!.key)
remove(definition.key, removeFromDefinition)
val definitionVariables = definition.variables
val definitionSize = definitionVariables!!.currentSize
for (i in 0 until definitionSize) {
val definitionVariable = definitionVariables.getVariable(i)
val definitionValue = definitionVariables[definitionVariable]
add(definitionVariable, definitionValue * value, removeFromDefinition)
}
return value
}
/**
* Remove a variable from the list
*
* @param variable the variable we want to remove
* @param removeFromDefinition
* @return the value of the removed variable
*/
override fun remove(variable: SolverVariable?, removeFromDefinition: Boolean): Float {
if (candidate === variable) {
candidate = null
}
if (head == NONE) {
return 0f
}
var current = head
var previous = NONE
var counter = 0
while (current != NONE && counter < currentSize) {
val idx = mArrayIndices[current]
if (idx == variable!!.id) {
if (current == head) {
head = mArrayNextIndices[current]
} else {
mArrayNextIndices[previous] = mArrayNextIndices[current]
}
if (removeFromDefinition) {
variable.removeFromRow(mRow)
}
variable.usageInRowCount--
currentSize--
mArrayIndices[current] = NONE
if (mDidFillOnce) {
// If we did a full pass already, remember that spot
mLast = current
}
return mArrayValues[current]
}
previous = current
current = mArrayNextIndices[current]
counter++
}
return 0f
}
/**
* Clear the list of variables
*/
override fun clear() {
var current = head
var counter = 0
while (current != NONE && counter < currentSize) {
val variable = mCache.mIndexedVariables[mArrayIndices[current]]
variable?.removeFromRow(mRow)
current = mArrayNextIndices[current]
counter++
}
head = NONE
mLast = NONE
mDidFillOnce = false
currentSize = 0
}
/**
* Returns true if the variable is contained in the list
*
* @param variable the variable we are looking for
* @return return true if we found the variable
*/
override fun contains(variable: SolverVariable?): Boolean {
if (head == NONE) {
return false
}
var current = head
var counter = 0
while (current != NONE && counter < currentSize) {
if (mArrayIndices[current] == variable!!.id) {
return true
}
current = mArrayNextIndices[current]
counter++
}
return false
}
override fun indexOf(variable: SolverVariable?): Int {
if (head == NONE) {
return -1
}
var current = head
var counter = 0
while (current != NONE && counter < currentSize) {
if (mArrayIndices[current] == variable!!.id) {
return current
}
current = mArrayNextIndices[current]
counter++
}
return -1
}
/**
* Returns true if at least one of the variable is positive
*
* @return true if at least one of the variable is positive
*/
fun hasAtLeastOnePositiveVariable(): Boolean {
var current = head
var counter = 0
while (current != NONE && counter < currentSize) {
if (mArrayValues[current] > 0) {
return true
}
current = mArrayNextIndices[current]
counter++
}
return false
}
/**
* Invert the values of all the variables in the list
*/
override fun invert() {
var current = head
var counter = 0
while (current != NONE && counter < currentSize) {
mArrayValues[current] = mArrayValues[current] * -1
current = mArrayNextIndices[current]
counter++
}
}
/**
* Divide the values of all the variables in the list
* by the given amount
*
* @param amount amount to divide by
*/
override fun divideByAmount(amount: Float) {
var current = head
var counter = 0
while (current != NONE && counter < currentSize) {
mArrayValues[current] /= amount
current = mArrayNextIndices[current]
counter++
}
}
fun getId(index: Int): Int {
return mArrayIndices[index]
}
fun getValue(index: Int): Float {
return mArrayValues[index]
}
fun getNextIndice(index: Int): Int {
return mArrayNextIndices[index]
}// We can return the first negative candidate as in ArrayLinkedVariables
// they are already sorted by id
// if no candidate is known, let's figure it out
/**
* TODO: check if still needed
* Return a pivot candidate
* @return return a variable we can pivot on
*/
val pivotCandidate: SolverVariable?
get() {
if (candidate == null) {
// if no candidate is known, let's figure it out
var current = head
var counter = 0
var pivot: SolverVariable? = null
while (current != NONE && counter < currentSize) {
if (mArrayValues[current] < 0) {
// We can return the first negative candidate as in ArrayLinkedVariables
// they are already sorted by id
val v = mCache.mIndexedVariables[mArrayIndices[current]]
if (pivot == null || pivot.strength < (v?.strength ?: 0)) {
pivot = v
}
}
current = mArrayNextIndices[current]
counter++
}
return pivot
}
return candidate
}
/**
* Return a variable from its position in the linked list
*
* @param index the index of the variable we want to return
* @return the variable found, or null
*/
override fun getVariable(index: Int): SolverVariable? {
var current = head
var counter = 0
while (current != NONE && counter < currentSize) {
if (counter == index) {
return mCache.mIndexedVariables[mArrayIndices[current]]
}
current = mArrayNextIndices[current]
counter++
}
return null
}
/**
* Return the value of a variable from its position in the linked list
*
* @param index the index of the variable we want to look up
* @return the value of the found variable, or 0 if not found
*/
override fun getVariableValue(index: Int): Float {
var current = head
var counter = 0
while (current != NONE && counter < currentSize) {
if (counter == index) {
return mArrayValues[current]
}
current = mArrayNextIndices[current]
counter++
}
return 0f
}
/**
* Return the value of a variable, 0 if not found
* @param v the variable we are looking up
* @return the value of the found variable, or 0 if not found
*/
override fun get(v: SolverVariable?): Float {
var current = head
var counter = 0
while (current != NONE && counter < currentSize) {
if (mArrayIndices[current] == v!!.id) {
return mArrayValues[current]
}
current = mArrayNextIndices[current]
counter++
}
return 0f
}
override fun sizeInBytes(): Int {
var size = 0
size += 3 * (mArrayIndices.size * 4)
size += 9 * 4
return size
}
override fun display() {
val count = currentSize
print("{ ")
for (i in 0 until count) {
val v = getVariable(i) ?: continue
print(v.toString() + " = " + getVariableValue(i) + " ")
}
println(" }")
}
/**
* Returns a string representation of the list
*
* @return a string containing a representation of the list
*/
override fun toString(): String {
var result = ""
var current = head
var counter = 0
while (current != NONE && counter < currentSize) {
result += " -> "
result += mArrayValues[current].toString() + " : "
result += mCache.mIndexedVariables[mArrayIndices[current]]
current = mArrayNextIndices[current]
counter++
}
return result
}
companion object {
private const val DEBUG = false
const val NONE = -1
private const val FULL_NEW_CHECK = false // full validation (debug purposes)
private const val epsilon = 0.001f
}
// Example of a basic loop
// current or previous point to mArrayIndices
//
// int current = mHead;
// int counter = 0;
// while (current != NONE && counter < currentSize) {
// SolverVariable currentVariable = mCache.mIndexedVariables[mArrayIndices[current]];
// float currentValue = mArrayValues[current];
// ...
// current = mArrayNextIndices[current]; counter++;
// }
/**
* Constructor
* @param arrayRow the row owning us
* @param cache instances cache
*/
init {
if (DEBUG) {
for (i in mArrayIndices.indices) {
mArrayIndices[i] = NONE
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy