commonMain.androidx.constraintlayout.core.ArrayRow.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of compose-constraint-layout-jvm Show documentation
Show all versions of compose-constraint-layout-jvm Show documentation
A copy of Android's ConstraintLayout (v2.1.3 core and v1.0.0 compose) with multiplatform capability.
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package androidx.constraintlayout.core
import kotlin.jvm.JvmField
open class ArrayRow : LinearSystem.Row {
override var key: SolverVariable? = null
@JvmField
var constantValue = 0f
var used = false
var variablesToUpdate = ArrayList()
@JvmField
var variables: ArrayRowVariables? = null
interface ArrayRowVariables {
val currentSize: Int
fun getVariable(i: Int): SolverVariable?
fun getVariableValue(i: Int): Float
operator fun get(variable: SolverVariable?): Float
fun indexOf(variable: SolverVariable?): Int
fun display()
fun clear()
operator fun contains(v: SolverVariable?): Boolean
fun put(variable: SolverVariable?, value: Float)
fun sizeInBytes(): Int
fun invert()
fun remove(v: SolverVariable?, removeFromDefinition: Boolean): Float
fun divideByAmount(amount: Float)
fun add(`var`: SolverVariable?, value: Float, removeFromDefinition: Boolean)
fun use(definition: ArrayRow?, removeFromDefinition: Boolean): Float
}
var isSimpleDefinition = false
constructor() {}
constructor(cache: Cache) {
variables = ArrayLinkedVariables(this, cache)
//variables = new OptimizedSolverVariableValues(this, cache);
}
fun hasKeyVariable(): Boolean {
return !(key == null
|| (key!!.mType != SolverVariable.Type.UNRESTRICTED
&& constantValue < 0))
}
override fun toString(): String {
return toReadableString()
}
fun toReadableString(): String {
var s = ""
if (key == null) {
s += "0"
} else {
s += key
}
s += " = "
var addedVariable = false
if (constantValue != 0f) {
s += constantValue
addedVariable = true
}
val count = variables!!.currentSize
for (i in 0 until count) {
val v = variables!!.getVariable(i) ?: continue
var amount = variables!!.getVariableValue(i)
if (amount == 0f) {
continue
}
val name = v.toString()
if (!addedVariable) {
if (amount < 0) {
s += "- "
amount *= -1f
}
} else {
if (amount > 0) {
s += " + "
} else {
s += " - "
amount *= -1f
}
}
s += if (amount == 1f) {
name
} else {
"$amount $name"
}
addedVariable = true
}
if (!addedVariable) {
s += "0.0"
}
if (DEBUG) {
variables!!.display()
}
return s
}
fun reset() {
key = null
variables!!.clear()
constantValue = 0f
isSimpleDefinition = false
}
fun hasVariable(v: SolverVariable?): Boolean {
return variables!!.contains(v)
}
fun createRowDefinition(variable: SolverVariable, value: Int): ArrayRow {
key = variable
variable.computedValue = value.toFloat()
constantValue = value.toFloat()
isSimpleDefinition = true
return this
}
fun createRowEquals(variable: SolverVariable?, value: Int): ArrayRow {
if (value < 0) {
constantValue = (-1 * value).toFloat()
variables!!.put(variable, 1f)
} else {
constantValue = value.toFloat()
variables!!.put(variable, -1f)
}
return this
}
fun createRowEquals(variableA: SolverVariable?, variableB: SolverVariable?, margin: Int): ArrayRow {
var inverse = false
if (margin != 0) {
var m = margin
if (m < 0) {
m = -1 * m
inverse = true
}
constantValue = m.toFloat()
}
if (!inverse) {
variables!!.put(variableA, -1f)
variables!!.put(variableB, 1f)
} else {
variables!!.put(variableA, 1f)
variables!!.put(variableB, -1f)
}
return this
}
fun addSingleError(error: SolverVariable?, sign: Int): ArrayRow {
variables!!.put(error, sign.toFloat())
return this
}
fun createRowGreaterThan(
variableA: SolverVariable?,
variableB: SolverVariable?, slack: SolverVariable?,
margin: Int
): ArrayRow {
var inverse = false
if (margin != 0) {
var m = margin
if (m < 0) {
m = -1 * m
inverse = true
}
constantValue = m.toFloat()
}
if (!inverse) {
variables!!.put(variableA, -1f)
variables!!.put(variableB, 1f)
variables!!.put(slack, 1f)
} else {
variables!!.put(variableA, 1f)
variables!!.put(variableB, -1f)
variables!!.put(slack, -1f)
}
return this
}
fun createRowGreaterThan(a: SolverVariable?, b: Int, slack: SolverVariable?): ArrayRow {
constantValue = b.toFloat()
variables!!.put(a, -1f)
return this
}
fun createRowLowerThan(
variableA: SolverVariable?, variableB: SolverVariable?,
slack: SolverVariable?, margin: Int
): ArrayRow {
var inverse = false
if (margin != 0) {
var m = margin
if (m < 0) {
m = -1 * m
inverse = true
}
constantValue = m.toFloat()
}
if (!inverse) {
variables!!.put(variableA, -1f)
variables!!.put(variableB, 1f)
variables!!.put(slack, -1f)
} else {
variables!!.put(variableA, 1f)
variables!!.put(variableB, -1f)
variables!!.put(slack, 1f)
}
return this
}
fun createRowEqualMatchDimensions(
currentWeight: Float, totalWeights: Float, nextWeight: Float,
variableStartA: SolverVariable?,
variableEndA: SolverVariable?,
variableStartB: SolverVariable?,
variableEndB: SolverVariable?
): ArrayRow {
constantValue = 0f
if (totalWeights == 0f || currentWeight == nextWeight) {
// endA - startA == endB - startB
// 0 = startA - endA + endB - startB
variables!!.put(variableStartA, 1f)
variables!!.put(variableEndA, -1f)
variables!!.put(variableEndB, 1f)
variables!!.put(variableStartB, -1f)
} else {
if (currentWeight == 0f) {
variables!!.put(variableStartA, 1f)
variables!!.put(variableEndA, -1f)
} else if (nextWeight == 0f) {
variables!!.put(variableStartB, 1f)
variables!!.put(variableEndB, -1f)
} else {
val cw = currentWeight / totalWeights
val nw = nextWeight / totalWeights
val w = cw / nw
// endA - startA == w * (endB - startB)
// 0 = startA - endA + w * (endB - startB)
variables!!.put(variableStartA, 1f)
variables!!.put(variableEndA, -1f)
variables!!.put(variableEndB, w)
variables!!.put(variableStartB, -w)
}
}
return this
}
fun createRowEqualDimension(
currentWeight: Float, totalWeights: Float, nextWeight: Float,
variableStartA: SolverVariable?, marginStartA: Int,
variableEndA: SolverVariable?, marginEndA: Int,
variableStartB: SolverVariable?, marginStartB: Int,
variableEndB: SolverVariable?, marginEndB: Int
): ArrayRow {
if (totalWeights == 0f || currentWeight == nextWeight) {
// endA - startA + marginStartA + marginEndA == endB - startB + marginStartB + marginEndB
// 0 = startA - endA - marginStartA - marginEndA + endB - startB + marginStartB + marginEndB
// 0 = (- marginStartA - marginEndA + marginStartB + marginEndB) + startA - endA + endB - startB
constantValue = (-marginStartA - marginEndA + marginStartB + marginEndB).toFloat()
variables!!.put(variableStartA, 1f)
variables!!.put(variableEndA, -1f)
variables!!.put(variableEndB, 1f)
variables!!.put(variableStartB, -1f)
} else {
val cw = currentWeight / totalWeights
val nw = nextWeight / totalWeights
val w = cw / nw
// (endA - startA + marginStartA + marginEndA) = w * (endB - startB) + marginStartB + marginEndB;
// 0 = (startA - endA - marginStartA - marginEndA) + w * (endB - startB) + marginStartB + marginEndB
// 0 = (- marginStartA - marginEndA + marginStartB + marginEndB) + startA - endA + w * endB - w * startB
constantValue = -marginStartA - marginEndA + w * marginStartB + w * marginEndB
variables!!.put(variableStartA, 1f)
variables!!.put(variableEndA, -1f)
variables!!.put(variableEndB, w)
variables!!.put(variableStartB, -w)
}
return this
}
fun createRowCentering(
variableA: SolverVariable?, variableB: SolverVariable, marginA: Int,
bias: Float, variableC: SolverVariable, variableD: SolverVariable?, marginB: Int
): ArrayRow {
if (variableB === variableC) {
// centering on the same position
// B - A == D - B
// 0 = A + D - 2 * B
variables!!.put(variableA, 1f)
variables!!.put(variableD, 1f)
variables!!.put(variableB, -2f)
return this
}
if (bias == 0.5f) {
// don't bother applying the bias, we are centered
// A - B = C - D
// 0 = A - B - C + D
// with margin:
// A - B - Ma = C - D - Mb
// 0 = A - B - C + D - Ma + Mb
variables!!.put(variableA, 1f)
variables!!.put(variableB, -1f)
variables!!.put(variableC, -1f)
variables!!.put(variableD, 1f)
if (marginA > 0 || marginB > 0) {
constantValue = (-marginA + marginB).toFloat()
}
} else if (bias <= 0) {
// A = B + m
variables!!.put(variableA, -1f)
variables!!.put(variableB, 1f)
constantValue = marginA.toFloat()
} else if (bias >= 1) {
// D = C - m
variables!!.put(variableD, -1f)
variables!!.put(variableC, 1f)
constantValue = -marginB.toFloat()
} else {
variables!!.put(variableA, 1 * (1 - bias))
variables!!.put(variableB, -1 * (1 - bias))
variables!!.put(variableC, -1 * bias)
variables!!.put(variableD, 1 * bias)
if (marginA > 0 || marginB > 0) {
constantValue = -marginA * (1 - bias) + marginB * bias
}
}
return this
}
fun addError(system: LinearSystem, strength: Int): ArrayRow {
variables!!.put(system.createErrorVariable(strength, "ep"), 1f)
variables!!.put(system.createErrorVariable(strength, "em"), -1f)
return this
}
fun createRowDimensionPercent(
variableA: SolverVariable?,
variableC: SolverVariable?, percent: Float
): ArrayRow {
variables!!.put(variableA, -1f)
variables!!.put(variableC, percent)
return this
}
/**
* Create a constraint to express `A = B + (C - D)` * ratio
* We use this for ratio, where for example `Right = Left + (Bottom - Top) * percent`
*
* @param variableA variable A
* @param variableB variable B
* @param variableC variable C
* @param variableD variable D
* @param ratio ratio between AB and CD
* @return the row
*/
fun createRowDimensionRatio(
variableA: SolverVariable?, variableB: SolverVariable?,
variableC: SolverVariable?, variableD: SolverVariable?, ratio: Float
): ArrayRow {
// A = B + (C - D) * ratio
variables!!.put(variableA, -1f)
variables!!.put(variableB, 1f)
variables!!.put(variableC, ratio)
variables!!.put(variableD, -ratio)
return this
}
/**
* Create a constraint to express At + (Ab-At)/2 = Bt + (Bb-Bt)/2 - angle
*
* @param at
* @param ab
* @param bt
* @param bb
* @param angleComponent
* @return
*/
fun createRowWithAngle(at: SolverVariable?, ab: SolverVariable?, bt: SolverVariable?, bb: SolverVariable?, angleComponent: Float): ArrayRow {
variables!!.put(bt, 0.5f)
variables!!.put(bb, 0.5f)
variables!!.put(at, -0.5f)
variables!!.put(ab, -0.5f)
constantValue = -angleComponent
return this
}
fun sizeInBytes(): Int {
var size = 0
if (key != null) {
size += 4 // object
}
size += 4 // constantValue
size += 4 // used
size += variables!!.sizeInBytes()
return size
}
fun ensurePositiveConstant() {
// Ensure that if we have a constant it's positive
if (constantValue < 0) {
// If not, simply multiply the equation by -1
constantValue *= -1f
variables!!.invert()
}
}
/**
* Pick a subject variable out of the existing ones.
* - if a variable is unrestricted
* - or if it's a negative new variable (not found elsewhere)
* - otherwise we have to add a new additional variable
*
* @return true if we added an extra variable to the system
*/
fun chooseSubject(system: LinearSystem): Boolean {
var addedExtra = false
val pivotCandidate = chooseSubjectInVariables(system)
if (pivotCandidate == null) {
// need to add extra variable
addedExtra = true
} else {
pivot(pivotCandidate)
}
if (variables!!.currentSize == 0) {
isSimpleDefinition = true
}
return addedExtra
}
/**
* Pick a subject variable out of the existing ones.
* - if a variable is unrestricted
* - or if it's a negative new variable (not found elsewhere)
* - otherwise we return null
*
* @return a candidate variable we can pivot on or null if not found
*/
fun chooseSubjectInVariables(system: LinearSystem): SolverVariable? {
// if unrestricted, pick it
// if restricted, needs to be < 0 and new
//
var restrictedCandidate: SolverVariable? = null
var unrestrictedCandidate: SolverVariable? = null
var unrestrictedCandidateAmount = 0f
var restrictedCandidateAmount = 0f
var unrestrictedCandidateIsNew = false
var restrictedCandidateIsNew = false
val currentSize = variables!!.currentSize
for (i in 0 until currentSize) {
val amount = variables!!.getVariableValue(i)
val variable = variables!!.getVariable(i)
if (variable?.mType == SolverVariable.Type.UNRESTRICTED) {
if (unrestrictedCandidate == null) {
unrestrictedCandidate = variable
unrestrictedCandidateAmount = amount
unrestrictedCandidateIsNew = isNew(variable, system)
} else if (unrestrictedCandidateAmount > amount) {
unrestrictedCandidate = variable
unrestrictedCandidateAmount = amount
unrestrictedCandidateIsNew = isNew(variable, system)
} else if (!unrestrictedCandidateIsNew && isNew(variable, system)) {
unrestrictedCandidate = variable
unrestrictedCandidateAmount = amount
unrestrictedCandidateIsNew = true
}
} else if (unrestrictedCandidate == null) {
if (amount < 0) {
if (restrictedCandidate == null) {
restrictedCandidate = variable
restrictedCandidateAmount = amount
restrictedCandidateIsNew = isNew(variable, system)
} else if (restrictedCandidateAmount > amount) {
restrictedCandidate = variable
restrictedCandidateAmount = amount
restrictedCandidateIsNew = isNew(variable, system)
} else if (!restrictedCandidateIsNew && isNew(variable, system)) {
restrictedCandidate = variable
restrictedCandidateAmount = amount
restrictedCandidateIsNew = true
}
}
}
}
return unrestrictedCandidate ?: restrictedCandidate
}
/**
* Returns true if the variable is new to the system, i.e. is already present
* in one of the rows. This function is called while choosing the subject of a new row.
*
* @param variable the variable to check for
* @param system the linear system we check
* @return
*/
private fun isNew(variable: SolverVariable?, system: LinearSystem): Boolean {
if (FULL_NEW_CHECK) {
var isNew = true
for (i in 0 until system.numEquations) {
val row = system.mRows!![i]!!
if (row.hasVariable(variable)) {
isNew = false
}
}
if ((variable?.usageInRowCount ?: 0) <= 1 != isNew) {
println("Problem with usage tracking")
}
return isNew
}
// We maintain a usage count -- variables are ref counted if they are present
// in the right side of a row or not. If the count is zero or one, the variable
// is new (if one, it means it exist in a row, but this is the row we insert)
return (variable?.usageInRowCount ?: 0) <= 1
}
fun pivot(v: SolverVariable?) {
if (key != null) {
// first, move back the variable to its column
variables!!.put(key, -1f)
key!!.definitionId = -1
key = null
}
val amount = variables!!.remove(v, true) * -1
key = v
if (amount == 1f) {
return
}
constantValue = constantValue / amount
variables!!.divideByAmount(amount)
}
// Row compatibility
override val isEmpty: Boolean
get() = key == null && constantValue == 0f && variables!!.currentSize == 0
override fun updateFromRow(system: LinearSystem?, definition: ArrayRow?, removeFromDefinition: Boolean) {
val value = variables!!.use(definition, removeFromDefinition)
constantValue += definition!!.constantValue * value
if (removeFromDefinition) {
definition.key!!.removeFromRow(this)
}
if (LinearSystem.SIMPLIFY_SYNONYMS
&& key != null && variables!!.currentSize == 0
) {
isSimpleDefinition = true
system!!.hasSimpleDefinition = true
}
}
override fun updateFromFinalVariable(system: LinearSystem?, variable: SolverVariable?, removeFromDefinition: Boolean) {
if (variable == null || !variable.isFinalValue) {
return
}
val value = variables!![variable]
constantValue += variable.computedValue * value
variables!!.remove(variable, removeFromDefinition)
if (removeFromDefinition) {
variable.removeFromRow(this)
}
if (LinearSystem.SIMPLIFY_SYNONYMS
&& variables!!.currentSize == 0
) {
isSimpleDefinition = true
system!!.hasSimpleDefinition = true
}
}
fun updateFromSynonymVariable(system: LinearSystem?, variable: SolverVariable?, removeFromDefinition: Boolean) {
if (variable == null || !variable.isSynonym) {
return
}
val value = variables!![variable]
constantValue += variable.synonymDelta * value
variables!!.remove(variable, removeFromDefinition)
if (removeFromDefinition) {
variable.removeFromRow(this)
}
variables!!.add(system!!.cache.mIndexedVariables[variable.synonym], value, removeFromDefinition)
if (LinearSystem.SIMPLIFY_SYNONYMS
&& variables!!.currentSize == 0
) {
isSimpleDefinition = true
system.hasSimpleDefinition = true
}
}
private fun pickPivotInVariables(avoid: BooleanArray?, exclude: SolverVariable?): SolverVariable? {
val all = true
var value = 0f
var pivot: SolverVariable? = null
var pivotSlack: SolverVariable? = null
var valueSlack = 0f
val currentSize = variables!!.currentSize
for (i in 0 until currentSize) {
val currentValue = variables!!.getVariableValue(i)
if (currentValue < 0) {
// We can return the first negative candidate as in ArrayLinkedVariables
// they are already sorted by id
val v = variables!!.getVariable(i) ?: continue
if (!(avoid != null && avoid[v.id] || v === exclude)) {
if (all) {
if (v.mType == SolverVariable.Type.SLACK
|| v.mType == SolverVariable.Type.ERROR
) {
if (currentValue < value) {
value = currentValue
pivot = v
}
}
} else {
if (v.mType == SolverVariable.Type.SLACK) {
if (currentValue < valueSlack) {
valueSlack = currentValue
pivotSlack = v
}
} else if (v?.mType == SolverVariable.Type.ERROR) {
if (currentValue < value) {
value = currentValue
pivot = v
}
}
}
}
}
}
return if (all) {
pivot
} else pivot ?: pivotSlack
}
fun pickPivot(exclude: SolverVariable?): SolverVariable? {
return pickPivotInVariables(null, exclude)
}
override fun getPivotCandidate(system: LinearSystem?, avoid: BooleanArray?): SolverVariable? {
return pickPivotInVariables(avoid, null)
}
override fun clear() {
variables!!.clear()
key = null
constantValue = 0f
}
/**
* Used to initiate a goal from a given row (to see if we can remove an extra var)
* @param row
*/
override fun initFromRow(row: LinearSystem.Row?) {
if (row is ArrayRow) {
val copiedRow = row
key = null
variables!!.clear()
for (i in 0 until copiedRow.variables!!.currentSize) {
val `var` = copiedRow.variables!!.getVariable(i)
val `val` = copiedRow.variables!!.getVariableValue(i)
variables!!.add(`var`, `val`, true)
}
}
}
override fun addError(error: SolverVariable?) {
var weight = 1f
if (error!!.strength == SolverVariable.STRENGTH_LOW) {
weight = 1f
} else if (error.strength == SolverVariable.STRENGTH_MEDIUM) {
weight = 1E3f
} else if (error.strength == SolverVariable.STRENGTH_HIGH) {
weight = 1E6f
} else if (error.strength == SolverVariable.STRENGTH_HIGHEST) {
weight = 1E9f
} else if (error.strength == SolverVariable.STRENGTH_EQUALITY) {
weight = 1E12f
}
variables!!.put(error, weight)
}
override fun updateFromSystem(system: LinearSystem?) {
if (system?.mRows?.count() == 0) {
return
}
var done = false
while (!done) {
val currentSize = variables!!.currentSize
for (i in 0 until currentSize) {
val variable = variables!!.getVariable(i) ?: continue
if (variable?.definitionId != -1 || variable.isFinalValue || variable.isSynonym) {
variablesToUpdate.add(variable)
}
}
val size = variablesToUpdate.size
if (size > 0) {
for (i in 0 until size) {
val variable = variablesToUpdate[i]
if (variable.isFinalValue) {
updateFromFinalVariable(system, variable, true)
} else if (variable.isSynonym) {
updateFromSynonymVariable(system, variable, true)
} else {
updateFromRow(system, system?.mRows!![variable.definitionId], true)
}
}
variablesToUpdate.clear()
} else {
done = true
}
}
if (LinearSystem.SIMPLIFY_SYNONYMS
&& key != null && variables!!.currentSize == 0
) {
isSimpleDefinition = true
system?.hasSimpleDefinition = true
}
}
companion object {
private const val DEBUG = false
private const val FULL_NEW_CHECK = false // full validation (debug purposes)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy