All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.redismq.id.DefaultIdWorker Maven / Gradle / Ivy

There is a newer version: 1.2.1
Show newest version
package com.redismq.id;

import com.redismq.common.config.GlobalConfigCache;

import java.util.concurrent.ThreadLocalRandom;

/**
 * 

名称:IdWorker.java

*

描述:分布式自增长ID

*
 *     Twitter的 Snowflake JAVA实现方案
 * 
* 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用: * 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000 * 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间, * 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识), * 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。 * 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分), * 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。 *

* 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加)) * * @author Polim *

* 共计机器32台X32 版本 * 标准版 */ public class DefaultIdWorker { // 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动) private final long twepoch = 1713953445000L; // 机器标识位数 意思就是最多代表 2 ^ 5 个机房(32 个机房) 从0开始标识位 private final long workerIdBits = GlobalConfigCache.GLOBAL_CONFIG.maxWorkerIdBits; // 机器ID最大值 2的3次方-1 7 机器id 0-7 private final long maxWorkerId = ~(-1L << workerIdBits); // 毫秒内自增位 private final long sequenceBits = 10L; // 机器ID偏左移12位 private final long workerIdShift = sequenceBits; // 时间毫秒左移22位 private final long timestampLeftShift = sequenceBits + workerIdBits ; private final long sequenceMask = -1L ^ (-1L << sequenceBits); /* 上次生产id时间戳 */ private long lastTimestamp = -1L; // 0,并发控制 private long sequence = 0L; private final long workerId; /** * @param workerId 工作机器ID */ public DefaultIdWorker(long workerId) { if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId)); } this.workerId = workerId; } /** * 获取下一个ID * */ public synchronized long nextId() { long timestamp = timeGen(); if (timestamp < lastTimestamp) { long offset = lastTimestamp - timestamp; if (offset <= 10) { try { wait(offset << 1); timestamp = timeGen(); if (timestamp < lastTimestamp) { throw new RuntimeException(String.format("雪花算法时钟回滚 距离当前时间还差%d milliseconds", offset)); } } catch (Exception e) { throw new RuntimeException(e); } } else { throw new RuntimeException(String.format("雪花算法时钟回滚 距离当前时间还差%d milliseconds", offset)); } } if (lastTimestamp == timestamp) { // 当前毫秒内,则+1 sequence = (sequence + 1) & sequenceMask; if (sequence == 0) { // 当前毫秒内计数满了,则等待下一秒 timestamp = tilNextMillis(lastTimestamp); } } else { // 不同毫秒内,序列号置为 1 - 3 随机数 sequence = ThreadLocalRandom.current().nextLong(1, 3); } lastTimestamp = timestamp; // ID偏移组合生成最终的ID,并返回ID return ((timestamp - twepoch) << timestampLeftShift) | (workerId << workerIdShift) | sequence; } private long tilNextMillis(final long lastTimestamp) { long timestamp = this.timeGen(); while (timestamp <= lastTimestamp) { timestamp = this.timeGen(); } return timestamp; } private long timeGen() { return System.currentTimeMillis(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy