All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.kaka.util.IntSet Maven / Gradle / Ivy

The newest version!
/** *****************************************************************************
 * Copyright 2011 See AUTHORS file.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ***************************************************************************** */
package com.kaka.util;

import java.io.Serializable;
import java.util.NoSuchElementException;

/**
 * An unordered set that uses int keys. This implementation uses cuckoo hashing
 * using 3 hashes, random walking, and a small stash for problematic keys. No
 * allocation is done except when growing the table size. 
*
* This set performs very fast contains and remove (typically O(1), worst case * O(log(n))). Add may be a bit slower, depending on hash collisions. Load * factors greater than 0.91 greatly increase the chances the set will have to * rehash to the next higher POT size. * * @author Nathan Sweet */ public class IntSet implements Serializable { private static final int PRIME1 = 0xbe1f14b1; private static final int PRIME2 = 0xb4b82e39; private static final int PRIME3 = 0xced1c241; private static final int EMPTY = 0; int size; int[] keyTable; int capacity, stashSize; boolean hasZeroValue; private float loadFactor; private int hashShift, mask, threshold; private int stashCapacity; private int pushIterations; private IntSetIterator iterator1, iterator2; /** * Creates a new set with an initial capacity of 51 and a load factor of * 0.8. */ public IntSet() { this(51, 0.8f); } /** * Creates a new set with a load factor of 0.8. * * @param initialCapacity If not a power of two, it is increased to the next * nearest power of two. */ public IntSet(int initialCapacity) { this(initialCapacity, 0.8f); } /** * Creates a new set with the specified initial capacity and load factor. * This set will hold initialCapacity items before growing the backing * table. * * @param initialCapacity If not a power of two, it is increased to the next * nearest power of two. */ public IntSet(int initialCapacity, float loadFactor) { if (initialCapacity < 0) { throw new IllegalArgumentException("initialCapacity must be >= 0: " + initialCapacity); } initialCapacity = MathUtils.nextPowerOfTwo((int) Math.ceil(initialCapacity / loadFactor)); if (initialCapacity > 1 << 30) { throw new IllegalArgumentException("initialCapacity is too large: " + initialCapacity); } capacity = initialCapacity; if (loadFactor <= 0) { throw new IllegalArgumentException("loadFactor must be > 0: " + loadFactor); } this.loadFactor = loadFactor; threshold = (int) (capacity * loadFactor); mask = capacity - 1; hashShift = 31 - Integer.numberOfTrailingZeros(capacity); stashCapacity = Math.max(3, (int) Math.ceil(Math.log(capacity)) * 2); pushIterations = Math.max(Math.min(capacity, 8), (int) Math.sqrt(capacity) / 8); keyTable = new int[capacity + stashCapacity]; } /** * Creates a new set identical to the specified set. */ public IntSet(IntSet set) { this((int) Math.floor(set.capacity * set.loadFactor), set.loadFactor); stashSize = set.stashSize; System.arraycopy(set.keyTable, 0, keyTable, 0, set.keyTable.length); size = set.size; hasZeroValue = set.hasZeroValue; } /** * Returns true if the key was not already in the set. */ public boolean add(int key) { if (key == 0) { if (hasZeroValue) { return false; } hasZeroValue = true; size++; return true; } int[] keyTable = this.keyTable; // Check for existing keys. int index1 = key & mask; int key1 = keyTable[index1]; if (key1 == key) { return false; } int index2 = hash2(key); int key2 = keyTable[index2]; if (key2 == key) { return false; } int index3 = hash3(key); int key3 = keyTable[index3]; if (key3 == key) { return false; } // Find key in the stash. for (int i = capacity, n = i + stashSize; i < n; i++) { if (keyTable[i] == key) { return false; } } // Check for empty buckets. if (key1 == EMPTY) { keyTable[index1] = key; if (size++ >= threshold) { resize(capacity << 1); } return true; } if (key2 == EMPTY) { keyTable[index2] = key; if (size++ >= threshold) { resize(capacity << 1); } return true; } if (key3 == EMPTY) { keyTable[index3] = key; if (size++ >= threshold) { resize(capacity << 1); } return true; } push(key, index1, key1, index2, key2, index3, key3); return true; } public void addAll(IntArray array) { addAll(array, 0, array.size); } public void addAll(IntArray array, int offset, int length) { if (offset + length > array.size) { throw new IllegalArgumentException("offset + length must be <= size: " + offset + " + " + length + " <= " + array.size); } addAll(array.items, offset, length); } public void addAll(int... array) { addAll(array, 0, array.length); } public void addAll(int[] array, int offset, int length) { ensureCapacity(length); for (int i = offset, n = i + length; i < n; i++) { add(array[i]); } } public void addAll(IntSet set) { ensureCapacity(set.size); IntSetIterator iterator = set.iterator(); while (iterator.hasNext) { add(iterator.next()); } } /** * Skips checks for existing keys. */ private void addResize(int key) { if (key == 0) { hasZeroValue = true; return; } // Check for empty buckets. int index1 = key & mask; int key1 = keyTable[index1]; if (key1 == EMPTY) { keyTable[index1] = key; if (size++ >= threshold) { resize(capacity << 1); } return; } int index2 = hash2(key); int key2 = keyTable[index2]; if (key2 == EMPTY) { keyTable[index2] = key; if (size++ >= threshold) { resize(capacity << 1); } return; } int index3 = hash3(key); int key3 = keyTable[index3]; if (key3 == EMPTY) { keyTable[index3] = key; if (size++ >= threshold) { resize(capacity << 1); } return; } push(key, index1, key1, index2, key2, index3, key3); } private void push(int insertKey, int index1, int key1, int index2, int key2, int index3, int key3) { int[] keyTable = this.keyTable; int mask = this.mask; // Push keys until an empty bucket is found. int evictedKey; int i = 0, pushIterations = this.pushIterations; do { // Replace the key and value for one of the hashes. switch (MathUtils.random(2)) { case 0: evictedKey = key1; keyTable[index1] = insertKey; break; case 1: evictedKey = key2; keyTable[index2] = insertKey; break; default: evictedKey = key3; keyTable[index3] = insertKey; break; } // If the evicted key hashes to an empty bucket, put it there and stop. index1 = evictedKey & mask; key1 = keyTable[index1]; if (key1 == EMPTY) { keyTable[index1] = evictedKey; if (size++ >= threshold) { resize(capacity << 1); } return; } index2 = hash2(evictedKey); key2 = keyTable[index2]; if (key2 == EMPTY) { keyTable[index2] = evictedKey; if (size++ >= threshold) { resize(capacity << 1); } return; } index3 = hash3(evictedKey); key3 = keyTable[index3]; if (key3 == EMPTY) { keyTable[index3] = evictedKey; if (size++ >= threshold) { resize(capacity << 1); } return; } if (++i == pushIterations) { break; } insertKey = evictedKey; } while (true); addStash(evictedKey); } private void addStash(int key) { if (stashSize == stashCapacity) { // Too many pushes occurred and the stash is full, increase the table size. resize(capacity << 1); add(key); return; } // Store key in the stash. int index = capacity + stashSize; keyTable[index] = key; stashSize++; size++; } /** * Returns true if the key was removed. */ public boolean remove(int key) { if (key == 0) { if (!hasZeroValue) { return false; } hasZeroValue = false; size--; return true; } int index = key & mask; if (keyTable[index] == key) { keyTable[index] = EMPTY; size--; return true; } index = hash2(key); if (keyTable[index] == key) { keyTable[index] = EMPTY; size--; return true; } index = hash3(key); if (keyTable[index] == key) { keyTable[index] = EMPTY; size--; return true; } return removeStash(key); } boolean removeStash(int key) { int[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) { if (keyTable[i] == key) { removeStashIndex(i); size--; return true; } } return false; } void removeStashIndex(int index) { // If the removed location was not last, move the last tuple to the removed location. stashSize--; int lastIndex = capacity + stashSize; if (index < lastIndex) { keyTable[index] = keyTable[lastIndex]; } } /** * Reduces the size of the backing arrays to be the specified capacity or * less. If the capacity is already less, nothing is done. If the set * contains more items than the specified capacity, the next highest power * of two capacity is used instead. */ public void shrink(int maximumCapacity) { if (maximumCapacity < 0) { throw new IllegalArgumentException("maximumCapacity must be >= 0: " + maximumCapacity); } if (size > maximumCapacity) { maximumCapacity = size; } if (capacity <= maximumCapacity) { return; } maximumCapacity = MathUtils.nextPowerOfTwo(maximumCapacity); resize(maximumCapacity); } /** * Clears the set and reduces the size of the backing arrays to be the * specified capacity if they are larger. */ public void clear(int maximumCapacity) { if (capacity <= maximumCapacity) { clear(); return; } hasZeroValue = false; size = 0; resize(maximumCapacity); } public void clear() { if (size == 0) { return; } int[] keyTable = this.keyTable; for (int i = capacity + stashSize; i-- > 0;) { keyTable[i] = EMPTY; } size = 0; stashSize = 0; hasZeroValue = false; } public boolean contains(int key) { if (key == 0) { return hasZeroValue; } int index = key & mask; if (keyTable[index] != key) { index = hash2(key); if (keyTable[index] != key) { index = hash3(key); if (keyTable[index] != key) { return containsKeyStash(key); } } } return true; } private boolean containsKeyStash(int key) { int[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) { if (keyTable[i] == key) { return true; } } return false; } public int first() { if (hasZeroValue) { return 0; } int[] keyTable = this.keyTable; for (int i = 0, n = capacity + stashSize; i < n; i++) { if (keyTable[i] != EMPTY) { return keyTable[i]; } } throw new IllegalStateException("IntSet is empty."); } /** * Increases the size of the backing array to accommodate the specified * number of additional items. Useful before adding many items to avoid * multiple backing array resizes. */ public void ensureCapacity(int additionalCapacity) { int sizeNeeded = size + additionalCapacity; if (sizeNeeded >= threshold) { resize(MathUtils.nextPowerOfTwo((int) Math.ceil(sizeNeeded / loadFactor))); } } private void resize(int newSize) { int oldEndIndex = capacity + stashSize; capacity = newSize; threshold = (int) (newSize * loadFactor); mask = newSize - 1; hashShift = 31 - Integer.numberOfTrailingZeros(newSize); stashCapacity = Math.max(3, (int) Math.ceil(Math.log(newSize)) * 2); pushIterations = Math.max(Math.min(newSize, 8), (int) Math.sqrt(newSize) / 8); int[] oldKeyTable = keyTable; keyTable = new int[newSize + stashCapacity]; int oldSize = size; size = hasZeroValue ? 1 : 0; stashSize = 0; if (oldSize > 0) { for (int i = 0; i < oldEndIndex; i++) { int key = oldKeyTable[i]; if (key != EMPTY) { addResize(key); } } } } private int hash2(int h) { h *= PRIME2; return (h ^ h >>> hashShift) & mask; } private int hash3(int h) { h *= PRIME3; return (h ^ h >>> hashShift) & mask; } public int hashCode() { int h = 0; for (int i = 0, n = capacity + stashSize; i < n; i++) { if (keyTable[i] != EMPTY) { h += keyTable[i]; } } return h; } public boolean equals(Object obj) { if (!(obj instanceof IntSet)) { return false; } IntSet other = (IntSet) obj; if (other.size != size) { return false; } if (other.hasZeroValue != hasZeroValue) { return false; } for (int i = 0, n = capacity + stashSize; i < n; i++) { if (keyTable[i] != EMPTY && !other.contains(keyTable[i])) { return false; } } return true; } public String toString() { if (size == 0) { return "[]"; } StringBuilder buffer = new StringBuilder(32); buffer.append('['); int[] keyTable = this.keyTable; int i = keyTable.length; if (hasZeroValue) { buffer.append("0"); } else { while (i-- > 0) { int key = keyTable[i]; if (key == EMPTY) { continue; } buffer.append(key); break; } } while (i-- > 0) { int key = keyTable[i]; if (key == EMPTY) { continue; } buffer.append(", "); buffer.append(key); } buffer.append(']'); return buffer.toString(); } /** * Returns an iterator for the keys in the set. Remove is supported. Note * that the same iterator instance is returned each time this method is * called. Use the {@link IntSetIterator} constructor for nested or * multithreaded iteration. */ public IntSetIterator iterator() { if (iterator1 == null) { iterator1 = new IntSetIterator(this); iterator2 = new IntSetIterator(this); } if (!iterator1.valid) { iterator1.reset(); iterator1.valid = true; iterator2.valid = false; return iterator1; } iterator2.reset(); iterator2.valid = true; iterator1.valid = false; return iterator2; } static public IntSet with(int... array) { IntSet set = new IntSet(); set.addAll(array); return set; } public int size() { return size; } static public class IntSetIterator { static final int INDEX_ILLEGAL = -2; static final int INDEX_ZERO = -1; public boolean hasNext; final IntSet set; int nextIndex, currentIndex; boolean valid = true; public IntSetIterator(IntSet set) { this.set = set; reset(); } public void reset() { currentIndex = INDEX_ILLEGAL; nextIndex = INDEX_ZERO; if (set.hasZeroValue) { hasNext = true; } else { findNextIndex(); } } void findNextIndex() { hasNext = false; int[] keyTable = set.keyTable; for (int n = set.capacity + set.stashSize; ++nextIndex < n;) { if (keyTable[nextIndex] != EMPTY) { hasNext = true; break; } } } public void remove() { if (currentIndex == INDEX_ZERO && set.hasZeroValue) { set.hasZeroValue = false; } else if (currentIndex < 0) { throw new IllegalStateException("next must be called before remove."); } else if (currentIndex >= set.capacity) { set.removeStashIndex(currentIndex); nextIndex = currentIndex - 1; findNextIndex(); } else { set.keyTable[currentIndex] = EMPTY; } currentIndex = INDEX_ILLEGAL; set.size--; } public int next() { if (!hasNext) { throw new NoSuchElementException(); } if (!valid) { throw new RuntimeException("#iterator() cannot be used nested."); } int key = nextIndex == INDEX_ZERO ? 0 : set.keyTable[nextIndex]; currentIndex = nextIndex; findNextIndex(); return key; } /** * Returns a new array containing the remaining keys. */ public IntArray toArray() { IntArray array = new IntArray(true, set.size); while (hasNext) { array.add(next()); } return array; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy