All Downloads are FREE. Search and download functionalities are using the official Maven repository.

commonMain.ru.casperix.math.angle.float32.RadianFloat.kt Maven / Gradle / Ivy

package ru.casperix.math.angle.float32

import ru.casperix.math.angle.Angle
import ru.casperix.math.angle.AngleBuilder
import ru.casperix.math.angle.float64.RadianDouble
import ru.casperix.math.geometry.fHPI
import ru.casperix.math.geometry.fPI
import ru.casperix.math.geometry.fPI2
import ru.casperix.math.geometry.fRADIAN_TO_DEGREE
import ru.casperix.math.interpolation.float32.InterpolateFloatFunction
import ru.casperix.math.interpolation.float32.linearInterpolatef
import ru.casperix.math.vector.float32.Vector2f
import ru.casperix.misc.toPrecision
import kotlinx.serialization.Serializable
import kotlin.jvm.JvmInline
import kotlin.math.*

@JvmInline
@Serializable
value class RadianFloat(val value: Float) : ru.casperix.math.angle.Angle {

    /**
     * @return angle in [0, 2PI) interval
     */
    override fun normalize(): RadianFloat {
        return RadianFloat(absMod(value, fPI2))
    }

    override fun isFinite(): Boolean {
        return value.isFinite()
    }

    override operator fun plus(other: RadianFloat): RadianFloat {
        return RadianFloat(value + other.value)
    }

    override operator fun minus(other: RadianFloat): RadianFloat {
        return RadianFloat(value - other.value)
    }

    override operator fun plus(other: Float): RadianFloat {
        return RadianFloat(value + other)
    }

    override operator fun minus(other: Float): RadianFloat {
        return RadianFloat(value - other)
    }


    override operator fun unaryMinus(): RadianFloat {
        return RadianFloat(-value)
    }

    override operator fun times(factor: Float): RadianFloat {
        return RadianFloat(value * factor)
    }

    override operator fun div(factor: Float): RadianFloat {
        return RadianFloat(value / factor)
    }

    override operator fun compareTo(other: Float): Int {
        return value.compareTo(other)
    }

    override operator fun compareTo(other: RadianFloat): Int {
        return value.compareTo(other.value)
    }

    fun toDegree(): ru.casperix.math.angle.float32.DegreeFloat {
        return ru.casperix.math.angle.float32.DegreeFloat(value * fRADIAN_TO_DEGREE)
    }

    fun toRadianDouble(): RadianDouble {
        return RadianDouble(value.toDouble())
    }

    override fun format(precision: Int): String {
        return value.toPrecision(precision)
    }

    override fun toString(): String {
        return format(3)
    }

    fun toDirection(): Vector2f {
        return Vector2f(cos(value), sin(value))
    }

    fun distTo(other: RadianFloat): RadianFloat {
        return betweenAngle(this, other)
    }

    companion object : ru.casperix.math.angle.AngleBuilder {
        override val ZERO = RadianFloat(0f)
        val PI2 = RadianFloat(fPI2)
        val PI = RadianFloat(fPI)
        val HPI = RadianFloat(fHPI)
        override val MAX = PI2


        /**
         * @see [byDirectionRadian]
         */
        override fun byDirection(value: Vector2f): RadianFloat {
            return byDirection(value.x, value.y)
        }

        /**
         * @see [byDirectionRadian]
         */
        override fun byDirection(x: Float, y: Float): RadianFloat {
            return RadianFloat(byDirectionRadian(x, y))
        }


        /**
         * @return angle from X-axis to vector in [0, 2PI) interval
         */
        fun byDirectionRadian(x: Float, y: Float): Float {
            val result = atan2(y, x)
            return if (result < 0f) PI2.value + result
            else result
//            val xAbs = x.absoluteValue
//            val yAbs = y.absoluteValue
//            return (fPI  - fHPI * (1f + x.sign) * (1f - (y * y).sign) - fHPI / 2f * (2f + x.sign) * y.sign - (x * y).sign * atan((xAbs - yAbs) / (xAbs + yAbs)))
        }

         fun absMod(value: Float, mod: Float): Float {
            return if (value < 0f) {
                (mod - (-value) % mod) % mod
            } else {
                value % mod
            }
        }


        /**
         * @return angle in [0, 2PI) interval
         */
        fun interpolateAngular(
            start: RadianFloat,
            finish: RadianFloat,
            position: Float,
            interpolator: InterpolateFloatFunction = linearInterpolatef
        ): RadianFloat {
            val startNormalized = start.normalize().value
            val finishNormalized = finish.normalize().value

            val finishAdapted = if ((startNormalized - finishNormalized).absoluteValue <= fPI) {
                finishNormalized
            } else if (startNormalized > finishNormalized) {
                finishNormalized + fPI2
            } else {
                finishNormalized - fPI2
            }

            return RadianFloat(interpolator(startNormalized, finishAdapted, position)).normalize()
        }

        fun betweenDirections(directionA: Vector2f, directionB: Vector2f): RadianFloat {
            return betweenAngle(byDirection(directionA), byDirection(directionB))
        }

        fun betweenAngle(angleA: RadianFloat, angleB: RadianFloat): RadianFloat {
            val a = (angleB - angleA).normalize()
            val b = (angleA - angleB).normalize()
            return if (a.value <= b.value) a else b
        }


        fun betweenDirectionsDirected(directionA: Vector2f, directionB: Vector2f): RadianFloat {
            return betweenAnglesDirected(byDirection(directionA), byDirection(directionB))
        }

        /**
         *  Radial distance from angle-a to angle-b in counter-clock-wise direction
         */
        fun betweenAnglesDirected(angleA: RadianFloat, angleB: RadianFloat): RadianFloat {
            val adaptedA = angleA.normalize()
            var adaptedB = angleB.normalize()
            if (adaptedB < adaptedA) {
                adaptedB += MAX
            }

            return adaptedB - adaptedA
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy