higherkindness.droste.data.Mu.scala Maven / Gradle / Ivy
package higherkindness.droste
package data
import cats.~>
import cats.Functor
import cats.Id
import cats.syntax.functor._
/** Mu is the least fixed point of a functor `F`. It is a computation that can
* consume a inductive noninfinite structure in one go.
*
* In Haskell this can more aptly be expressed as: `data Mu f = Mu (forall x .
* (f x -> x) -> x)`
*/
sealed abstract class Mu[F[_]] extends Serializable {
def apply[A](fold: Algebra[F, A]): A
def toFunctionK: Algebra[F, *] ~> Id =
new (Algebra[F, *] ~> Id) {
def apply[A](fa: Algebra[F, A]): Id[A] = Mu.this.apply(fa)
}
}
object Mu {
def algebra[F[_]: Functor]: Algebra[F, Mu[F]] =
Algebra(fmf => Default(fmf))
def coalgebra[F[_]: Functor]: Coalgebra[F, Mu[F]] =
Coalgebra[F, Mu[F]](mf => mf[F[Mu[F]]](Algebra(_ map algebra.run)))
def apply[F[_]: Functor](fmf: F[Mu[F]]): Mu[F] = algebra[F].apply(fmf)
def un[F[_]: Functor](mf: Mu[F]): F[Mu[F]] = coalgebra[F].apply(mf)
def unapply[F[_]: Functor](mf: Mu[F]): Some[F[Mu[F]]] = Some(un(mf))
private final case class Default[F[_]: Functor](fmf: F[Mu[F]]) extends Mu[F] {
def apply[A](fold: Algebra[F, A]): Id[A] =
fold(fmf map (mf => mf(fold)))
override def toString: String = s"Mu($fmf)"
}
implicit def drosteBasisForMu[F[_]: Functor]: Basis[F, Mu[F]] =
Basis.Default[F, Mu[F]](Mu.algebra, Mu.coalgebra)
implicit val drosteBasisSolveForMu: Basis.Solve.Aux[
Mu,
({ type L[F[_], A] = F[A] })#L
] = null
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy