All Downloads are FREE. Search and download functionalities are using the official Maven repository.

higherkindness.droste.kernel.scala Maven / Gradle / Ivy

The newest version!
package higherkindness.droste

import cats.Functor
import cats.Monad
import cats.Traverse
import cats.syntax.flatMap._
import cats.syntax.functor._
import cats.syntax.traverse._
import implicits.composedFunctor._
import implicits.composedTraverse._
import syntax.compose._

/** Fundamental recursion schemes implemented in terms of functions and nothing
  * else.
  */
object kernel {

  /** Build a hylomorphism by recursively unfolding with `coalgebra` and
    * refolding with `algebra`.
    *
    * 
 hylo A ---------------> B
    * | ^ co- | | algebra | | algebra
    * | | v | F[A] ------------> F[B] map hylo 
* * @group refolds */ def hylo[F[_]: Functor, A, B]( algebra: F[B] => B, coalgebra: A => F[A] ): A => B = new (A => B) { def apply(a: A): B = algebra(coalgebra(a).map(this)) } /** Convenience to build a hylomorphism for the composed functor `F[G[_]]`. * * This is strictly for convenience and just delegates to `hylo` with the * types set properly. * * @group refolds */ @inline def hyloC[F[_]: Functor, G[_]: Functor, A, B]( algebra: F[G[B]] => B, coalgebra: A => F[G[A]] ): A => B = hylo[(F ∘ G)#λ, A, B](algebra, coalgebra) /** Build a monadic hylomorphism * *
 hyloM A ---------------> M[B]
    * | ^ co- | | algebraM | | flatMap f
    * | | v | M[F[A]] ---------> M[F[M[B]]] map hyloM
    *
    * with f:
    *
    * F[M[B]] -----> M[F[B]] ----------> M[B] sequence flatMap algebraM 
* * @group refolds */ def hyloM[M[_]: Monad, F[_]: Traverse, A, B]( algebra: F[B] => M[B], coalgebra: A => M[F[A]] ): A => M[B] = hyloC[M, F, A, M[B]](_.flatMap(_.sequence.flatMap(algebra)), coalgebra) /** Convenience to build a monadic hylomorphism for the composed functor * `F[G[_]]`. * * @group refolds */ def hyloMC[M[_]: Monad, F[_]: Traverse, G[_]: Traverse, A, B]( algebra: F[G[B]] => M[B], coalgebra: A => M[F[G[A]]] ): A => M[B] = hyloM[M, (F ∘ G)#λ, A, B](algebra, coalgebra) }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy