io.jenetics.ext.MLEvolutionStrategy Maven / Gradle / Ivy
The newest version!
/*
* Java Genetic Algorithm Library (jenetics-8.1.0).
* Copyright (c) 2007-2024 Franz Wilhelmstötter
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author:
* Franz Wilhelmstötter ([email protected])
*/
package io.jenetics.ext;
import static java.lang.String.format;
import io.jenetics.Gene;
import io.jenetics.Mutator;
import io.jenetics.TruncationSelector;
import io.jenetics.engine.Engine.Builder;
import io.jenetics.engine.Engine.Setup;
import io.jenetics.internal.util.Requires;
/**
* Setup for a (μ, λ)-Evolution Strategy. Applying this setup is done in the
* following way.
* {@snippet lang="java":
* final var engine = Engine.builder(problem)
* .setup(new MLEvolutionStrategy<>(μ, λ, p))
* .build();
* }
*
* And is equivalent to the following builder setup.
* {@snippet lang="java":
* final var engine = Engine.builder(problem)
* .populationSize(λ)
* .survivorsSize(0)
* .offspringSelector(new TruncationSelector<>(μ))
* .alterers(new Mutator<>(p))
* .build();
* }
*
* @param the gene type
* @param the fitness result type
*
* @author Franz Wilhelmstötter
* @version 6.0
* @since 6.0
*/
public final class MLEvolutionStrategy<
G extends Gene, G>,
C extends Comparable super C>
>
implements Setup
{
private final int _mu;
private final int _lambda;
private final double _mutationProbability;
/**
* Create a new (μ, λ)-Evolution Strategy with the given parameters.
*
* @param mu the number of the fittest individuals to be selected
* @param lambda the population count
* @param mutationProbability the mutation probability
* @throws IllegalArgumentException if {@code mu < 2} or {@code lambda < mu}
* or {@code mutationProbability not in [0, 1]}
*/
public MLEvolutionStrategy(
final int mu,
final int lambda,
final double mutationProbability
) {
if (mu < 2) {
throw new IllegalArgumentException(format(
"mu (μ) must be greater or equal 2: %d.", mu
));
}
if (lambda < mu) {
throw new IllegalArgumentException(format(
"lambda (λ) must be greater or equal then μ [μ=%d, λ=%d].",
mu, lambda
));
}
_mu = mu;
_lambda = lambda;
_mutationProbability = Requires.probability(mutationProbability);
}
/**
* Create a new (μ, λ)-Evolution Strategy with the given parameters. The
* mutation probability is set to {@link Mutator#DEFAULT_ALTER_PROBABILITY}.
*
* @param mu the number of the fittest individuals to be selected
* @param lambda the population count
* @throws IllegalArgumentException if {@code mu < 2} or {@code lambda < mu}
* or {@code mutationProbability not in [0, 1]}
*/
public MLEvolutionStrategy(final int mu, final int lambda) {
this(mu, lambda, Mutator.DEFAULT_ALTER_PROBABILITY);
}
@Override
public void apply(final Builder builder) {
builder.populationSize(_lambda)
.survivorsSize(0)
.offspringSelector(new TruncationSelector<>(_mu))
.alterers(new Mutator<>(_mutationProbability));
}
}