All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.jenetics.ext.SimulatedBinaryCrossover Maven / Gradle / Ivy

The newest version!
/*
 * Java Genetic Algorithm Library (jenetics-8.1.0).
 * Copyright (c) 2007-2024 Franz Wilhelmstötter
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Author:
 *    Franz Wilhelmstötter ([email protected])
 */
package io.jenetics.ext;

import static java.lang.Math.abs;
import static java.lang.Math.clamp;
import static java.lang.Math.pow;
import static java.lang.String.format;

import io.jenetics.Crossover;
import io.jenetics.NumericGene;
import io.jenetics.internal.math.Randoms;
import io.jenetics.internal.util.Requires;
import io.jenetics.util.MSeq;
import io.jenetics.util.RandomRegistry;

/**
 * Performs the simulated binary crossover (SBX) on a {@code Chromosome} of
 * {@link NumericGene}s such that each position is either crossed contracted or
 * expanded with a certain probability. The probability distribution is designed
 * such that the children will lie closer to their parents, as is the case with
 * the single-point binary crossover.
 * 

* It is implemented as described in Deb, K. and Agrawal, R. B. 1995. Simulated * binary crossover for continuous search space. Complex Systems, 9, pp. 115-148. * * @author Franz Wilhelmstötter * @since 3.5 * @version 6.0 */ public class SimulatedBinaryCrossover< G extends NumericGene, C extends Comparable > extends Crossover { private final double _contiguity; /** * Create a new simulated binary crossover alterer with the given * parameters. * * @param probability the recombination probability * @param contiguity the contiguity value that specifies how close a child * should be to its parents (larger value means closer). The value * must be greater or equal than 0. Typical values are in the range * [2..5]. * @throws IllegalArgumentException if the {@code probability} is not in the * valid range of {@code [0, 1]} * @throws IllegalArgumentException if {@code contiguity} is smaller than * zero */ public SimulatedBinaryCrossover( final double probability, final double contiguity ) { super(probability); _contiguity = Requires.nonNegative(contiguity); } /** * Create a new simulated binary crossover alterer with the given * parameters. The contiguity value is set to {@code 2.5}. * * @param probability the recombination probability * @throws IllegalArgumentException if the {@code probability} is not in the * valid range of {@code [0, 1]} * @throws IllegalArgumentException if {@code contiguity} is smaller than * zero */ public SimulatedBinaryCrossover(final double probability) { this(probability, 2.5); } /** * Return the contiguity value of the crossover. * * @return the contiguity value of the crossover */ public double contiguity() { return _contiguity; } @Override protected int crossover(final MSeq that, final MSeq other) { return (int) Randoms.indexes(RandomRegistry.random(), that.length(), 0.5) .peek(i -> crossover(that, other, i)) .count(); } private void crossover(final MSeq that, final MSeq other, final int i) { final var random = RandomRegistry.random(); final double u = random.nextDouble(); final double beta; if (u < 0.5) { // If u is smaller than 0.5 perform a contracting crossover. beta = pow(2*u, 1.0/(_contiguity + 1)); } else if (u > 0.5) { // Otherwise, perform an expanding crossover. beta = pow(0.5/(1.0 - u), 1.0/(_contiguity + 1)); } else { beta = 1; } final double v1 = that.get(i).doubleValue(); final double v2 = other.get(i).doubleValue(); final double v = random.nextBoolean() ? ((v1 - v2)*0.5) - beta*0.5*abs(v1 - v2) : ((v1 - v2)*0.5) + beta*0.5*abs(v1 - v2); final double min = that.get(i).min().doubleValue(); final double max = that.get(i).max().doubleValue(); that.set(i, that.get(i).newInstance(clamp(v, min, max))); } @Override public String toString() { return format( "SimulatedBinaryCrossover[p=%f, c=%f]", _probability, _contiguity ); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy