All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.javaparser.symbolsolver.javaparsermodel.JavaParserFacade Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (C) 2015-2016 Federico Tomassetti
 * Copyright (C) 2017-2020 The JavaParser Team.
 *
 * This file is part of JavaParser.
 *
 * JavaParser can be used either under the terms of
 * a) the GNU Lesser General Public License as published by
 *     the Free Software Foundation, either version 3 of the License, or
 *     (at your option) any later version.
 * b) the terms of the Apache License
 *
 * You should have received a copy of both licenses in LICENCE.LGPL and
 * LICENCE.APACHE. Please refer to those files for details.
 *
 * JavaParser is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 */

package com.github.javaparser.symbolsolver.javaparsermodel;

import static com.github.javaparser.symbolsolver.javaparser.Navigator.demandParentNode;
import static com.github.javaparser.symbolsolver.model.resolution.SymbolReference.solved;
import static com.github.javaparser.symbolsolver.model.resolution.SymbolReference.unsolved;

import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.Set;
import java.util.WeakHashMap;
import java.util.stream.Collectors;

import com.github.javaparser.ast.CompilationUnit;
import com.github.javaparser.ast.DataKey;
import com.github.javaparser.ast.Node;
import com.github.javaparser.ast.NodeList;
import com.github.javaparser.ast.body.BodyDeclaration;
import com.github.javaparser.ast.body.ClassOrInterfaceDeclaration;
import com.github.javaparser.ast.body.EnumDeclaration;
import com.github.javaparser.ast.body.TypeDeclaration;
import com.github.javaparser.ast.body.VariableDeclarator;
import com.github.javaparser.ast.expr.*;
import com.github.javaparser.ast.stmt.ExplicitConstructorInvocationStmt;
import com.github.javaparser.ast.type.ArrayType;
import com.github.javaparser.ast.type.ClassOrInterfaceType;
import com.github.javaparser.ast.type.Type;
import com.github.javaparser.ast.type.UnionType;
import com.github.javaparser.ast.type.VarType;
import com.github.javaparser.ast.type.WildcardType;
import com.github.javaparser.resolution.MethodAmbiguityException;
import com.github.javaparser.resolution.MethodUsage;
import com.github.javaparser.resolution.UnsolvedSymbolException;
import com.github.javaparser.resolution.declarations.ResolvedAnnotationDeclaration;
import com.github.javaparser.resolution.declarations.ResolvedClassDeclaration;
import com.github.javaparser.resolution.declarations.ResolvedConstructorDeclaration;
import com.github.javaparser.resolution.declarations.ResolvedMethodDeclaration;
import com.github.javaparser.resolution.declarations.ResolvedReferenceTypeDeclaration;
import com.github.javaparser.resolution.declarations.ResolvedTypeDeclaration;
import com.github.javaparser.resolution.declarations.ResolvedValueDeclaration;
import com.github.javaparser.resolution.types.ResolvedArrayType;
import com.github.javaparser.resolution.types.ResolvedPrimitiveType;
import com.github.javaparser.resolution.types.ResolvedReferenceType;
import com.github.javaparser.resolution.types.ResolvedType;
import com.github.javaparser.resolution.types.ResolvedTypeVariable;
import com.github.javaparser.resolution.types.ResolvedUnionType;
import com.github.javaparser.resolution.types.ResolvedVoidType;
import com.github.javaparser.resolution.types.ResolvedWildcard;
import com.github.javaparser.symbolsolver.core.resolution.Context;
import com.github.javaparser.symbolsolver.javaparsermodel.contexts.FieldAccessContext;
import com.github.javaparser.symbolsolver.javaparsermodel.declarations.JavaParserAnonymousClassDeclaration;
import com.github.javaparser.symbolsolver.javaparsermodel.declarations.JavaParserEnumDeclaration;
import com.github.javaparser.symbolsolver.model.resolution.SymbolReference;
import com.github.javaparser.symbolsolver.model.resolution.TypeSolver;
import com.github.javaparser.symbolsolver.model.typesystem.ReferenceTypeImpl;
import com.github.javaparser.symbolsolver.reflectionmodel.ReflectionAnnotationDeclaration;
import com.github.javaparser.symbolsolver.reflectionmodel.ReflectionClassDeclaration;
import com.github.javaparser.symbolsolver.reflectionmodel.ReflectionEnumDeclaration;
import com.github.javaparser.symbolsolver.reflectionmodel.ReflectionInterfaceDeclaration;
import com.github.javaparser.symbolsolver.resolution.ConstructorResolutionLogic;
import com.github.javaparser.symbolsolver.resolution.MethodResolutionLogic;
import com.github.javaparser.symbolsolver.resolution.SymbolSolver;
import com.github.javaparser.utils.Log;

/**
 * Class to be used by final users to solve symbols for JavaParser ASTs.
 *
 * @author Federico Tomassetti
 */
public class JavaParserFacade {

    // Start of static class

    private static final DataKey TYPE_WITH_LAMBDAS_RESOLVED = new DataKey() {
    };
    private static final DataKey TYPE_WITHOUT_LAMBDAS_RESOLVED = new DataKey() {
    };

    private static final Map instances = new WeakHashMap<>();
    
    private static final String JAVA_LANG_STRING = String.class.getCanonicalName();

    /**
     * Note that the addition of the modifier {@code synchronized} is specific and directly in response to issue #2668.
     * 
This MUST NOT be misinterpreted as a signal that JavaParser is safe to use within a multi-threaded environment. *
*
Additional discussion and context from a user attempting multithreading can be found within issue #2671 . *
* * @see https://github.com/javaparser/javaparser/issues/2668 * @see https://github.com/javaparser/javaparser/issues/2671 */ public static synchronized JavaParserFacade get(TypeSolver typeSolver) { return instances.computeIfAbsent(typeSolver, JavaParserFacade::new); } /** * This method is used to clear internal caches for the sake of releasing memory. */ public static void clearInstances() { instances.clear(); } protected static ResolvedType solveGenericTypes(ResolvedType type, Context context) { if (type.isTypeVariable()) { return context.solveGenericType(type.describe()).orElse(type); } if (type.isWildcard()) { if (type.asWildcard().isExtends() || type.asWildcard().isSuper()) { ResolvedWildcard wildcardUsage = type.asWildcard(); ResolvedType boundResolved = solveGenericTypes(wildcardUsage.getBoundedType(), context); if (wildcardUsage.isExtends()) { return ResolvedWildcard.extendsBound(boundResolved); } else { return ResolvedWildcard.superBound(boundResolved); } } } return type; } // End of static class private final TypeSolver typeSolver; private final TypeExtractor typeExtractor; private final SymbolSolver symbolSolver; private JavaParserFacade(TypeSolver typeSolver) { this.typeSolver = typeSolver.getRoot(); this.symbolSolver = new SymbolSolver(typeSolver); this.typeExtractor = new TypeExtractor(typeSolver, this); } public TypeSolver getTypeSolver() { return typeSolver; } public SymbolSolver getSymbolSolver() { return symbolSolver; } public SymbolReference solve(NameExpr nameExpr) { return symbolSolver.solveSymbol(nameExpr.getName().getId(), nameExpr); } public SymbolReference solve(SimpleName nameExpr) { return symbolSolver.solveSymbol(nameExpr.getId(), nameExpr); } public SymbolReference solve(Expression expr) { return expr.toNameExpr().map(this::solve).orElseThrow(() -> new IllegalArgumentException(expr.getClass().getCanonicalName())); } public SymbolReference solve(MethodCallExpr methodCallExpr) { return solve(methodCallExpr, true); } public SymbolReference solve(MethodReferenceExpr methodReferenceExpr) { return solve(methodReferenceExpr, true); } public SymbolReference solve(ObjectCreationExpr objectCreationExpr) { return solve(objectCreationExpr, true); } public SymbolReference solve(ExplicitConstructorInvocationStmt explicitConstructorInvocationStmt) { return solve(explicitConstructorInvocationStmt, true); } public SymbolReference solve(ExplicitConstructorInvocationStmt explicitConstructorInvocationStmt, boolean solveLambdas) { // Constructor invocation must exist within a class (not interface). Optional optAncestorClassOrInterfaceNode = explicitConstructorInvocationStmt.findAncestor(ClassOrInterfaceDeclaration.class); if (!optAncestorClassOrInterfaceNode.isPresent()) { return unsolved(ResolvedConstructorDeclaration.class); } ClassOrInterfaceDeclaration classOrInterfaceNode = optAncestorClassOrInterfaceNode.get(); ResolvedReferenceTypeDeclaration resolvedClassNode = classOrInterfaceNode.resolve(); if (!resolvedClassNode.isClass()) { throw new IllegalStateException("Expected to be a class -- cannot call this() or super() within an interface."); } ResolvedTypeDeclaration typeDecl = null; if (explicitConstructorInvocationStmt.isThis()) { // this() typeDecl = resolvedClassNode.asReferenceType(); } else { // super() Optional superClass = resolvedClassNode.asClass().getSuperClass(); if (superClass.isPresent() && superClass.get().getTypeDeclaration().isPresent()) { typeDecl = superClass.get().getTypeDeclaration().get(); } } if (typeDecl == null) { return unsolved(ResolvedConstructorDeclaration.class); } // Solve each of the arguments being passed into this constructor invocation. List argumentTypes = new LinkedList<>(); List placeholders = new LinkedList<>(); solveArguments(explicitConstructorInvocationStmt, explicitConstructorInvocationStmt.getArguments(), solveLambdas, argumentTypes, placeholders); // Determine which constructor is referred to, and return it. SymbolReference res = ConstructorResolutionLogic.findMostApplicable(((ResolvedClassDeclaration) typeDecl).getConstructors(), argumentTypes, typeSolver); for (LambdaArgumentTypePlaceholder placeholder : placeholders) { placeholder.setMethod(res); } return res; } public SymbolReference solve(ThisExpr node) { // If 'this' is prefixed by a class eg. MyClass.this if (node.getTypeName().isPresent()) { // Get the class name String className = node.getTypeName().get().asString(); // Attempt to resolve using a typeSolver SymbolReference clazz = typeSolver.tryToSolveType(className); if (clazz.isSolved()) { return solved(clazz.getCorrespondingDeclaration()); } // Attempt to resolve locally in Compilation unit Optional cu = node.findAncestor(CompilationUnit.class); if (cu.isPresent()) { Optional classByName = cu.get().getClassByName(className); if (classByName.isPresent()) { return solved(getTypeDeclaration(classByName.get())); } } } return solved(getTypeDeclaration(findContainingTypeDeclOrObjectCreationExpr(node))); } /** * Given a constructor call find out to which constructor declaration it corresponds. */ public SymbolReference solve(ObjectCreationExpr objectCreationExpr, boolean solveLambdas) { List argumentTypes = new LinkedList<>(); List placeholders = new LinkedList<>(); solveArguments(objectCreationExpr, objectCreationExpr.getArguments(), solveLambdas, argumentTypes, placeholders); ResolvedReferenceTypeDeclaration typeDecl = null; if (objectCreationExpr.getAnonymousClassBody().isPresent()) { typeDecl = new JavaParserAnonymousClassDeclaration(objectCreationExpr, typeSolver); } else { ResolvedType classDecl = JavaParserFacade.get(typeSolver).convert(objectCreationExpr.getType(), objectCreationExpr); if (classDecl.isReferenceType() && classDecl.asReferenceType().getTypeDeclaration().isPresent()) { typeDecl = classDecl.asReferenceType().getTypeDeclaration().get(); } } if (typeDecl == null) { return unsolved(ResolvedConstructorDeclaration.class); } SymbolReference res = ConstructorResolutionLogic.findMostApplicable(typeDecl.getConstructors(), argumentTypes, typeSolver); for (LambdaArgumentTypePlaceholder placeholder : placeholders) { placeholder.setMethod(res); } return res; } private void solveArguments(Node node, NodeList args, boolean solveLambdas, List argumentTypes, List placeholders) { int i = 0; for (Expression parameterValue : args) { if (parameterValue.isLambdaExpr() || parameterValue.isMethodReferenceExpr()) { LambdaArgumentTypePlaceholder placeholder = new LambdaArgumentTypePlaceholder(i); argumentTypes.add(placeholder); placeholders.add(placeholder); } else { try { argumentTypes.add(JavaParserFacade.get(typeSolver).getType(parameterValue, solveLambdas)); } catch (UnsolvedSymbolException e) { throw e; } catch (Exception e) { throw new RuntimeException(String.format("Unable to calculate the type of a parameter of a method call. Method call: %s, Parameter: %s", node, parameterValue), e); } } i++; } } /** * Given a method call find out to which method declaration it corresponds. */ public SymbolReference solve(MethodCallExpr methodCallExpr, boolean solveLambdas) { List argumentTypes = new LinkedList<>(); List placeholders = new LinkedList<>(); solveArguments(methodCallExpr, methodCallExpr.getArguments(), solveLambdas, argumentTypes, placeholders); SymbolReference res = JavaParserFactory.getContext(methodCallExpr, typeSolver).solveMethod(methodCallExpr.getName().getId(), argumentTypes, false); for (LambdaArgumentTypePlaceholder placeholder : placeholders) { placeholder.setMethod(res); } return res; } /** * Given a method reference find out to which method declaration it corresponds. */ public SymbolReference solve(MethodReferenceExpr methodReferenceExpr, boolean solveLambdas) { // pass empty argument list to be populated List argumentTypes = new LinkedList<>(); return JavaParserFactory.getContext(methodReferenceExpr, typeSolver).solveMethod(methodReferenceExpr.getIdentifier(), argumentTypes, false); } public SymbolReference solve(AnnotationExpr annotationExpr) { Context context = JavaParserFactory.getContext(annotationExpr, typeSolver); SymbolReference typeDeclarationSymbolReference = context.solveType(annotationExpr.getNameAsString()); if (typeDeclarationSymbolReference.isSolved()) { ResolvedAnnotationDeclaration annotationDeclaration = (ResolvedAnnotationDeclaration) typeDeclarationSymbolReference.getCorrespondingDeclaration(); return solved(annotationDeclaration); } else { return unsolved(ResolvedAnnotationDeclaration.class); } } public SymbolReference solve(FieldAccessExpr fieldAccessExpr) { return ((FieldAccessContext) JavaParserFactory.getContext(fieldAccessExpr, typeSolver)).solveField(fieldAccessExpr.getName().getId()); } /** * Get the type associated with the node. *

* This method was originally intended to get the type of a value: any value has a type. *

* For example: *

     * int foo(int a) {
     *     return a; // when getType is invoked on "a" it returns the type "int"
     * }
     * 
*

* Now, users started using also of names of types itself, which do not have a type. *

* For example: *

     * class A {
     *     int foo(int a) {
     *         return A.someStaticField; // when getType is invoked on "A", which represents a class, it returns
     *             // the type "A" itself while it used to throw UnsolvedSymbolException
     * }
     * 
*

* To accommodate this usage and avoid confusion this method return * the type itself when used on the name of type. */ public ResolvedType getType(Node node) { try { return getType(node, true); } catch (UnsolvedSymbolException e) { if (node instanceof NameExpr) { NameExpr nameExpr = (NameExpr) node; SymbolReference typeDeclaration = JavaParserFactory.getContext(node, typeSolver) .solveType(nameExpr.getNameAsString()); if (typeDeclaration.isSolved() && typeDeclaration.getCorrespondingDeclaration() instanceof ResolvedReferenceTypeDeclaration) { ResolvedReferenceTypeDeclaration resolvedReferenceTypeDeclaration = (ResolvedReferenceTypeDeclaration) typeDeclaration.getCorrespondingDeclaration(); return ReferenceTypeImpl.undeterminedParameters(resolvedReferenceTypeDeclaration, typeSolver); } } throw e; } } public ResolvedType getType(Node node, boolean solveLambdas) { if (solveLambdas) { if (!node.containsData(TYPE_WITH_LAMBDAS_RESOLVED)) { ResolvedType res = getTypeConcrete(node, solveLambdas); node.setData(TYPE_WITH_LAMBDAS_RESOLVED, res); boolean secondPassNecessary = false; if (node instanceof MethodCallExpr) { MethodCallExpr methodCallExpr = (MethodCallExpr) node; for (Node arg : methodCallExpr.getArguments()) { if (!arg.containsData(TYPE_WITH_LAMBDAS_RESOLVED)) { getType(arg, true); secondPassNecessary = true; } } } if (secondPassNecessary) { node.removeData(TYPE_WITH_LAMBDAS_RESOLVED); ResolvedType type = getType(node, true); node.setData(TYPE_WITH_LAMBDAS_RESOLVED, type); } Log.trace("getType on %s -> %s", () -> node, () -> res); } return node.getData(TYPE_WITH_LAMBDAS_RESOLVED); } else { Optional res = find(TYPE_WITH_LAMBDAS_RESOLVED, node); if (res.isPresent()) { return res.get(); } res = find(TYPE_WITHOUT_LAMBDAS_RESOLVED, node); if (!res.isPresent()) { ResolvedType resType = getTypeConcrete(node, solveLambdas); node.setData(TYPE_WITHOUT_LAMBDAS_RESOLVED, resType); Optional finalRes = res; Log.trace("getType on %s (no solveLambdas) -> %s", () -> node, () -> finalRes); return resType; } return res.get(); } } private Optional find(DataKey dataKey, Node node) { if (node.containsData(dataKey)) { return Optional.of(node.getData(dataKey)); } return Optional.empty(); } protected MethodUsage toMethodUsage(MethodReferenceExpr methodReferenceExpr, List paramTypes) { Expression scope = methodReferenceExpr.getScope(); ResolvedType typeOfScope = getType(methodReferenceExpr.getScope()); if (!typeOfScope.isReferenceType()) { throw new UnsupportedOperationException(typeOfScope.getClass().getCanonicalName()); } Optional result; Set allMethods = typeOfScope.asReferenceType().getTypeDeclaration() .orElseThrow(() -> new RuntimeException("TypeDeclaration unexpectedly empty.")) .getAllMethods(); if (scope.isTypeExpr()) { // static methods should match all params List staticMethodUsages = allMethods.stream() .filter(it -> it.getDeclaration().isStatic()) .collect(Collectors.toList()); result = MethodResolutionLogic.findMostApplicableUsage(staticMethodUsages, methodReferenceExpr.getIdentifier(), paramTypes, typeSolver); if (!paramTypes.isEmpty()) { // instance methods are called on the first param and should match all other params List instanceMethodUsages = allMethods.stream() .filter(it -> !it.getDeclaration().isStatic()) .collect(Collectors.toList()); List instanceMethodParamTypes = new ArrayList<>(paramTypes); instanceMethodParamTypes.remove(0); // remove the first one Optional instanceResult = MethodResolutionLogic.findMostApplicableUsage( instanceMethodUsages, methodReferenceExpr.getIdentifier(), instanceMethodParamTypes, typeSolver); if (result.isPresent() && instanceResult.isPresent()) { throw new MethodAmbiguityException("Ambiguous method call: cannot find a most applicable method for " + methodReferenceExpr.getIdentifier()); } if (instanceResult.isPresent()) { result = instanceResult; } } } else { result = MethodResolutionLogic.findMostApplicableUsage(new ArrayList<>(allMethods), methodReferenceExpr.getIdentifier(), paramTypes, typeSolver); if (result.isPresent() && result.get().getDeclaration().isStatic()) { throw new RuntimeException("Invalid static method reference " + methodReferenceExpr.getIdentifier()); } } if (!result.isPresent()) { throw new UnsupportedOperationException(); } return result.get(); } protected ResolvedType getBinaryTypeConcrete(Node left, Node right, boolean solveLambdas, BinaryExpr.Operator operator) { ResolvedType leftType = getTypeConcrete(left, solveLambdas); ResolvedType rightType = getTypeConcrete(right, solveLambdas); // JLS 15.18.1. String Concatenation Operator + // If only one operand expression is of type String, then string conversion (§5.1.11) is performed on the other // operand to produce a string at run time. // // The result of string concatenation is a reference to a String object that is the concatenation of the two // operand strings. The characters of the left-hand operand precede the characters of the right-hand operand in // the newly created string. if (operator == BinaryExpr.Operator.PLUS) { boolean isLeftString = leftType.isReferenceType() && leftType.asReferenceType() .getQualifiedName().equals(JAVA_LANG_STRING); boolean isRightString = rightType.isReferenceType() && rightType.asReferenceType() .getQualifiedName().equals(JAVA_LANG_STRING); if (isLeftString || isRightString) { return isLeftString ? leftType : rightType; } } // JLS 5.6.2. Binary Numeric Promotion // // Widening primitive conversion (§5.1.2) is applied to convert either or both operands as specified by the // following rules: // // * If either operand is of type double, the other is converted to double. // * Otherwise, if either operand is of type float, the other is converted to float. // * Otherwise, if either operand is of type long, the other is converted to long. // * Otherwise, both operands are converted to type int. boolean isLeftNumeric = leftType.isPrimitive() && leftType.asPrimitive().isNumeric(); boolean isRightNumeric = rightType.isPrimitive() && rightType.asPrimitive().isNumeric(); if (isLeftNumeric && isRightNumeric) { return leftType.asPrimitive().bnp(rightType.asPrimitive()); } if (rightType.isAssignableBy(leftType)) { return rightType; } return leftType; } /** * Should return more like a TypeApplication: a TypeDeclaration and possible typeParametersValues or array * modifiers. */ private ResolvedType getTypeConcrete(Node node, boolean solveLambdas) { if (node == null) throw new IllegalArgumentException(); return node.accept(typeExtractor, solveLambdas); } /** * Where a node has an interface/class/enum declaration as its ancestor, return the nearest one. *

* NOTE: See {@link #findContainingTypeDeclOrObjectCreationExpr} if wanting to include anonymous inner classes. *

* For example, these all return X: * {@code public interface X { ... node here ... }} * {@code public class X { ... node here ... }} * {@code public enum X { ... node here ... }} * * @param node The Node whose ancestors will be traversed, * @return The first class/interface/enum declaration in the Node's ancestry. */ protected TypeDeclaration findContainingTypeDecl(Node node) { Node parent = node; while (true) { parent = demandParentNode(parent); if (parent instanceof TypeDeclaration) { return (TypeDeclaration) parent; } } } /** * Where a node has an interface/class/enum declaration -- or an object creation expression (anonymous inner class) * -- as its ancestor, return the nearest one. *

* NOTE: See {@link #findContainingTypeDecl} if wanting to not include anonymous inner classes. *

* For example, these all return X: *

    *
  • {@code public interface X { ... node here ... }}
  • *
  • {@code public class X { ... node here ... }}
  • *
  • {@code public enum X { ... node here ... }}
  • *
  • {@code
         *     new ActionListener() {
         *          ... node here ...
         *          public void actionPerformed(ActionEvent e) {
         *               ... or node here ...
         *          }
         *     }
         *     }
  • *
*

* * @param node The Node whose ancestors will be traversed, * @return The first class/interface/enum declaration -- or object creation expression (anonymous inner class) -- in * the Node's ancestry. */ protected Node findContainingTypeDeclOrObjectCreationExpr(Node node) { Node parent = node; boolean detachFlag = false; while (true) { parent = demandParentNode(parent); if (parent instanceof BodyDeclaration) { if (parent instanceof TypeDeclaration) { return parent; } else { detachFlag = true; } } else if (parent instanceof ObjectCreationExpr) { if (detachFlag) { return parent; } } } } /** * Where a node has an interface/class/enum declaration -- or an object creation expression in an inner class * references an outer class -- as its ancestor, return the declaration corresponding to the class name specified. */ protected Node findContainingTypeDeclOrObjectCreationExpr(Node node, String className) { Node parent = node; boolean detachFlag = false; while (true) { parent = demandParentNode(parent); if (parent instanceof BodyDeclaration) { if (parent instanceof TypeDeclaration && ((TypeDeclaration) parent).getFullyQualifiedName().get().endsWith(className)) { return parent; } else { detachFlag = true; } } else if (parent instanceof ObjectCreationExpr && ((ObjectCreationExpr) parent).getType().getName().asString().equals(className)) { if (detachFlag) { return parent; } } } } public ResolvedType convertToUsageVariableType(VariableDeclarator var) { return get(typeSolver).convertToUsage(var.getType(), var); } /** * Convert a {@link Type} into the corresponding {@link ResolvedType}. * * @param type The type to be converted. * @param context The current context. * * @return The type resolved. */ protected ResolvedType convertToUsage(Type type, Context context) { if (context == null) { throw new NullPointerException("Context should not be null"); } if (type.isUnknownType()) { throw new IllegalArgumentException("Inferred lambda parameter type"); } else if (type.isClassOrInterfaceType()) { return convertClassOrInterfaceTypeToUsage(type.asClassOrInterfaceType(), context); } else if (type.isPrimitiveType()) { return ResolvedPrimitiveType.byName(type.asPrimitiveType().getType().name()); } else if (type.isWildcardType()) { return convertWildcardTypeToUsage(type.asWildcardType(), context); } else if (type.isVoidType()) { return ResolvedVoidType.INSTANCE; } else if (type.isArrayType()) { return convertArrayTypeToUsage(type.asArrayType(), context); } else if (type.isUnionType()) { return convertUnionTypeToUsage(type.asUnionType(), context); } else if (type.isVarType()) { return convertVarTypeToUsage(type.asVarType(), context); } else { throw new UnsupportedOperationException(type.getClass().getCanonicalName()); } } /** * Convert a {@link Type} into the corresponding {@link ResolvedType}. * * @param type The type to be converted. * @param context The current context. * * @return The type resolved. */ public ResolvedType convertToUsage(Type type, Node context) { return convertToUsage(type, JavaParserFactory.getContext(context, typeSolver)); } /** * Convert a {@link Type} into the corresponding {@link ResolvedType}. * * @param type The type to be converted. * * @return The type resolved. */ public ResolvedType convertToUsage(Type type) { return convertToUsage(type, type); } /** * Convert a {@link ClassOrInterfaceType} into a {@link ResolvedType}. * * @param classOrInterfaceType The class of interface type to be converted. * @param context The current context. * * @return The type resolved. */ protected ResolvedType convertClassOrInterfaceTypeToUsage(ClassOrInterfaceType classOrInterfaceType, Context context) { String name = classOrInterfaceType.getNameWithScope(); SymbolReference ref = context.solveType(name); if (!ref.isSolved()) { throw new UnsolvedSymbolException(name); } ResolvedTypeDeclaration typeDeclaration = ref.getCorrespondingDeclaration(); List typeParameters = Collections.emptyList(); if (classOrInterfaceType.getTypeArguments().isPresent()) { typeParameters = classOrInterfaceType.getTypeArguments().get().stream().map((pt) -> convertToUsage(pt, context)).collect(Collectors.toList()); } if (typeDeclaration.isTypeParameter()) { return new ResolvedTypeVariable(typeDeclaration.asTypeParameter()); } else { return new ReferenceTypeImpl((ResolvedReferenceTypeDeclaration) typeDeclaration, typeParameters, typeSolver); } } /** * Convert a {@link WildcardType} into a {@link ResolvedType}. * * @param wildcardType The wildcard type to be converted. * @param context The current context. * * @return The type resolved. */ protected ResolvedType convertWildcardTypeToUsage(WildcardType wildcardType, Context context) { if (wildcardType.getExtendedType().isPresent() && !wildcardType.getSuperType().isPresent()) { return ResolvedWildcard.extendsBound(convertToUsage(wildcardType.getExtendedType().get(), context)); // removed (ReferenceTypeImpl) } else if (!wildcardType.getExtendedType().isPresent() && wildcardType.getSuperType().isPresent()) { return ResolvedWildcard.superBound(convertToUsage(wildcardType.getSuperType().get(), context)); // removed (ReferenceTypeImpl) } else if (!wildcardType.getExtendedType().isPresent() && !wildcardType.getSuperType().isPresent()) { return ResolvedWildcard.UNBOUNDED; } else { throw new UnsupportedOperationException(wildcardType.toString()); } } /** * Convert a {@link ArrayType} into a {@link ResolvedType}. * * @param arrayType The array type to be converted. * @param context The current context. * * @return The type resolved. */ protected ResolvedType convertArrayTypeToUsage(ArrayType arrayType, Context context) { return new ResolvedArrayType(convertToUsage(arrayType.getComponentType(), context)); } /** * Convert a {@link UnionType} into a {@link ResolvedType}. * * @param unionType The union type to be converted. * @param context The current context. * * @return The type resolved. */ protected ResolvedType convertUnionTypeToUsage(UnionType unionType, Context context) { List resolvedElements = unionType.getElements().stream() .map(el -> convertToUsage(el, context)) .collect(Collectors.toList()); return new ResolvedUnionType(resolvedElements); } /** * Convert a {@link VarType} into a {@link ResolvedType}. * * @param varType The var type to be converted. * @param context The current context. * * @return The type resolved. */ protected ResolvedType convertVarTypeToUsage(VarType varType, Context context) { Node parent = varType.getParentNode().get(); if (!(parent instanceof VariableDeclarator)) { throw new IllegalStateException("Trying to resolve a `var` which is not in a variable declaration."); } final VariableDeclarator variableDeclarator = (VariableDeclarator) parent; return variableDeclarator.getInitializer() .map(Expression::calculateResolvedType) .orElseThrow(() -> new IllegalStateException("Cannot resolve `var` which has no initializer.")); } public ResolvedType convert(Type type, Node node) { return convert(type, JavaParserFactory.getContext(node, typeSolver)); } public ResolvedType convert(Type type, Context context) { return convertToUsage(type, context); } public MethodUsage solveMethodAsUsage(MethodCallExpr call) { List params = new ArrayList<>(); if (call.getArguments() != null) { for (Expression param : call.getArguments()) { //getTypeConcrete(Node node, boolean solveLambdas) try { params.add(getType(param, false)); } catch (Exception e) { throw new RuntimeException(String.format("Error calculating the type of parameter %s of method call %s", param, call), e); } //params.add(getTypeConcrete(param, false)); } } Context context = JavaParserFactory.getContext(call, typeSolver); Optional methodUsage = context.solveMethodAsUsage(call.getName().getId(), params); if (!methodUsage.isPresent()) { throw new RuntimeException("Method '" + call.getName() + "' cannot be resolved in context " + call + " (line: " + call.getRange().map(r -> "" + r.begin.line).orElse("??") + ") " + context + ". Parameter types: " + params); } return methodUsage.get(); } public ResolvedReferenceTypeDeclaration getTypeDeclaration(Node node) { if (node instanceof TypeDeclaration) { return getTypeDeclaration((TypeDeclaration) node); } if (node instanceof ObjectCreationExpr) { return new JavaParserAnonymousClassDeclaration((ObjectCreationExpr) node, typeSolver); } throw new IllegalArgumentException(); } public ResolvedReferenceTypeDeclaration getTypeDeclaration(ClassOrInterfaceDeclaration classOrInterfaceDeclaration) { return JavaParserFactory.toTypeDeclaration(classOrInterfaceDeclaration, typeSolver); } /** * "this" inserted in the given point, which type would have? */ public ResolvedType getTypeOfThisIn(Node node) { // TODO consider static methods if (node instanceof ClassOrInterfaceDeclaration) { return new ReferenceTypeImpl(getTypeDeclaration((ClassOrInterfaceDeclaration) node), typeSolver); } if (node instanceof EnumDeclaration) { JavaParserEnumDeclaration enumDeclaration = new JavaParserEnumDeclaration((EnumDeclaration) node, typeSolver); return new ReferenceTypeImpl(enumDeclaration, typeSolver); } if (node instanceof ObjectCreationExpr && ((ObjectCreationExpr) node).getAnonymousClassBody().isPresent()) { JavaParserAnonymousClassDeclaration anonymousDeclaration = new JavaParserAnonymousClassDeclaration((ObjectCreationExpr) node, typeSolver); return new ReferenceTypeImpl(anonymousDeclaration, typeSolver); } return getTypeOfThisIn(demandParentNode(node)); } public ResolvedReferenceTypeDeclaration getTypeDeclaration(TypeDeclaration typeDeclaration) { return JavaParserFactory.toTypeDeclaration(typeDeclaration, typeSolver); } /** * Convert a {@link Class} into the corresponding {@link ResolvedType}. * * @param clazz The class to be converted. * * @return The class resolved. */ public ResolvedType classToResolvedType(Class clazz) { if (clazz.isPrimitive()) { return ResolvedPrimitiveType.byName(clazz.getName()); } ResolvedReferenceTypeDeclaration declaration; if (clazz.isAnnotation()) { declaration = new ReflectionAnnotationDeclaration(clazz, typeSolver); } else if (clazz.isEnum()) { declaration = new ReflectionEnumDeclaration(clazz, typeSolver); } else if (clazz.isInterface()) { declaration = new ReflectionInterfaceDeclaration(clazz, typeSolver); } else { declaration = new ReflectionClassDeclaration(clazz, typeSolver); } return new ReferenceTypeImpl(declaration, typeSolver); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy