com.github.javaparser.symbolsolver.reflectionmodel.ReflectionClassAdapter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of javaparser-symbol-solver-core Show documentation
Show all versions of javaparser-symbol-solver-core Show documentation
A Symbol Solver for Java, built on top of JavaParser (core)
The newest version!
/*
* Copyright (C) 2015-2016 Federico Tomassetti
* Copyright (C) 2017-2020 The JavaParser Team.
*
* This file is part of JavaParser.
*
* JavaParser can be used either under the terms of
* a) the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* b) the terms of the Apache License
*
* You should have received a copy of both licenses in LICENCE.LGPL and
* LICENCE.APACHE. Please refer to those files for details.
*
* JavaParser is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*/
package com.github.javaparser.symbolsolver.reflectionmodel;
import com.github.javaparser.resolution.UnsolvedSymbolException;
import com.github.javaparser.resolution.declarations.ResolvedConstructorDeclaration;
import com.github.javaparser.resolution.declarations.ResolvedFieldDeclaration;
import com.github.javaparser.resolution.declarations.ResolvedMethodDeclaration;
import com.github.javaparser.resolution.declarations.ResolvedReferenceTypeDeclaration;
import com.github.javaparser.resolution.declarations.ResolvedTypeParameterDeclaration;
import com.github.javaparser.resolution.types.ResolvedReferenceType;
import com.github.javaparser.resolution.types.ResolvedType;
import com.github.javaparser.symbolsolver.javaparsermodel.LambdaArgumentTypePlaceholder;
import com.github.javaparser.symbolsolver.logic.FunctionalInterfaceLogic;
import com.github.javaparser.symbolsolver.model.resolution.TypeSolver;
import com.github.javaparser.symbolsolver.model.typesystem.NullType;
import com.github.javaparser.symbolsolver.model.typesystem.ReferenceTypeImpl;
import java.lang.annotation.Annotation;
import java.lang.reflect.Field;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.TypeVariable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import java.util.Optional;
import java.util.Set;
import java.util.stream.Collectors;
/**
* @author Federico Tomassetti
*/
class ReflectionClassAdapter {
private Class> clazz;
private TypeSolver typeSolver;
private ResolvedReferenceTypeDeclaration typeDeclaration;
public ReflectionClassAdapter(Class> clazz, TypeSolver typeSolver, ResolvedReferenceTypeDeclaration typeDeclaration) {
this.clazz = clazz;
this.typeSolver = typeSolver;
this.typeDeclaration = typeDeclaration;
}
public Optional getSuperClass() {
if (clazz.getGenericSuperclass() == null) {
// There isn't a super class (e.g. when this refers to java.lang.Object)
return Optional.empty();
}
java.lang.reflect.Type superType = clazz.getGenericSuperclass();
if (superType instanceof ParameterizedType) {
ParameterizedType parameterizedType = (ParameterizedType) superType;
List typeParameters = Arrays.stream(parameterizedType.getActualTypeArguments())
.map((t) -> ReflectionFactory.typeUsageFor(t, typeSolver))
.collect(Collectors.toList());
return Optional.of(new ReferenceTypeImpl(new ReflectionClassDeclaration(clazz.getSuperclass(), typeSolver), typeParameters, typeSolver));
}
return Optional.of(new ReferenceTypeImpl(new ReflectionClassDeclaration(clazz.getSuperclass(), typeSolver), typeSolver));
}
public List getInterfaces() {
List interfaces = new ArrayList<>();
for (java.lang.reflect.Type superInterface : clazz.getGenericInterfaces()) {
if (superInterface instanceof ParameterizedType) {
ParameterizedType parameterizedType = (ParameterizedType) superInterface;
List typeParameters = Arrays.stream(parameterizedType.getActualTypeArguments())
.map((t) -> ReflectionFactory.typeUsageFor(t, typeSolver))
.collect(Collectors.toList());
interfaces.add(new ReferenceTypeImpl(new ReflectionInterfaceDeclaration((Class>) ((ParameterizedType) superInterface).getRawType(), typeSolver), typeParameters, typeSolver));
} else {
interfaces.add(new ReferenceTypeImpl(new ReflectionInterfaceDeclaration((Class>) superInterface, typeSolver), typeSolver));
}
}
return interfaces;
}
public List getAncestors() {
List ancestors = new LinkedList<>();
if (getSuperClass().isPresent()) {
ReferenceTypeImpl superClass = getSuperClass().get();
ancestors.add(superClass);
} else {
// Inject the implicitly added extends java.lang.Object
ReferenceTypeImpl object = new ReferenceTypeImpl(new ReflectionClassDeclaration(Object.class, typeSolver), typeSolver);
ancestors.add(object);
}
ancestors.addAll(getInterfaces());
for (int i = 0; i < ancestors.size(); i++) {
ResolvedReferenceType ancestor = ancestors.get(i);
if (ancestor.hasName() && ancestor.isJavaLangObject()) {
ancestors.remove(i);
i--;
}
}
return ancestors;
}
public ResolvedFieldDeclaration getField(String name) {
for (Field field : clazz.getDeclaredFields()) {
if (field.getName().equals(name)) {
return new ReflectionFieldDeclaration(field, typeSolver);
}
}
for (ResolvedReferenceType ancestor : typeDeclaration.getAllAncestors()) {
if (ancestor.getTypeDeclaration().isPresent()) {
ResolvedReferenceTypeDeclaration typeDeclaration = ancestor.getTypeDeclaration().get();
if (typeDeclaration.hasField(name)) {
ReflectionFieldDeclaration reflectionFieldDeclaration = (ReflectionFieldDeclaration) typeDeclaration.getField(name);
return reflectionFieldDeclaration.replaceType(ancestor.getFieldType(name).get());
}
}
}
throw new UnsolvedSymbolException(name, "Field in " + this);
}
public boolean hasField(String name) {
// First consider fields declared on this class
for (Field field : clazz.getDeclaredFields()) {
if (field.getName().equals(name)) {
return true;
}
}
// Then consider fields inherited from ancestors
for (ResolvedReferenceType ancestor : typeDeclaration.getAllAncestors()) {
if (ancestor.getTypeDeclaration().isPresent() && ancestor.getTypeDeclaration().get().hasField(name)) {
return true;
}
}
return false;
}
public List getAllFields() {
ArrayList fields = new ArrayList<>();
// First consider fields declared on this class
for (Field field : clazz.getDeclaredFields()) {
fields.add(new ReflectionFieldDeclaration(field, typeSolver));
}
// Then consider fields inherited from ancestors
for (ResolvedReferenceType ancestor : typeDeclaration.getAllAncestors()) {
ancestor.getTypeDeclaration().ifPresent(ancestorTypeDeclaration -> {
fields.addAll(ancestorTypeDeclaration.getAllFields());
});
}
return fields;
}
public Set getDeclaredMethods() {
return Arrays.stream(clazz.getDeclaredMethods())
.filter(m -> !m.isSynthetic() && !m.isBridge())
.map(m -> new ReflectionMethodDeclaration(m, typeSolver))
.collect(Collectors.toSet());
}
public List getTypeParameters() {
List params = new ArrayList<>();
for (TypeVariable> tv : this.clazz.getTypeParameters()) {
params.add(new ReflectionTypeParameter(tv, true, typeSolver));
}
return params;
}
public boolean isAssignableBy(ResolvedType type) {
if (type instanceof NullType) {
return true;
}
if (type instanceof LambdaArgumentTypePlaceholder) {
return isFunctionalInterface();
}
if (type.isArray()) {
return false;
}
if (type.isPrimitive()) {
return false;
}
if (type.describe().equals(typeDeclaration.getQualifiedName())) {
return true;
}
if (type instanceof ReferenceTypeImpl) {
ReferenceTypeImpl otherTypeDeclaration = (ReferenceTypeImpl) type;
if(otherTypeDeclaration.getTypeDeclaration().isPresent()) {
return otherTypeDeclaration.getTypeDeclaration().get().canBeAssignedTo(typeDeclaration);
}
}
return false;
}
public boolean hasDirectlyAnnotation(String canonicalName) {
for (Annotation a : clazz.getDeclaredAnnotations()) {
if (a.annotationType().getCanonicalName().equals(canonicalName)) {
return true;
}
}
return false;
}
private final boolean isFunctionalInterface() {
return FunctionalInterfaceLogic.getFunctionalMethod(typeDeclaration).isPresent();
}
public List getConstructors() {
return Arrays.stream(clazz.getDeclaredConstructors())
.filter(m -> !m.isSynthetic())
.map(m -> new ReflectionConstructorDeclaration(m, typeSolver))
.collect(Collectors.toList());
}
public Optional containerType() {
Class> declaringClass = clazz.getDeclaringClass();
return declaringClass == null ?
Optional.empty() :
Optional.of(ReflectionFactory.typeDeclarationFor(declaringClass, typeSolver));
}
}