io.jsonwebtoken.impl.security.EcdhKeyAlgorithm Maven / Gradle / Ivy
/*
* Copyright (C) 2021 jsonwebtoken.io
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.jsonwebtoken.impl.security;
import io.jsonwebtoken.JweHeader;
import io.jsonwebtoken.impl.DefaultJweHeader;
import io.jsonwebtoken.impl.lang.Bytes;
import io.jsonwebtoken.impl.lang.CheckedFunction;
import io.jsonwebtoken.impl.lang.ParameterReadable;
import io.jsonwebtoken.impl.lang.RequiredParameterReader;
import io.jsonwebtoken.lang.Arrays;
import io.jsonwebtoken.lang.Assert;
import io.jsonwebtoken.security.AeadAlgorithm;
import io.jsonwebtoken.security.Curve;
import io.jsonwebtoken.security.DecryptionKeyRequest;
import io.jsonwebtoken.security.DynamicJwkBuilder;
import io.jsonwebtoken.security.EcPublicJwk;
import io.jsonwebtoken.security.InvalidKeyException;
import io.jsonwebtoken.security.Jwks;
import io.jsonwebtoken.security.KeyAlgorithm;
import io.jsonwebtoken.security.KeyLengthSupplier;
import io.jsonwebtoken.security.KeyRequest;
import io.jsonwebtoken.security.KeyResult;
import io.jsonwebtoken.security.OctetPublicJwk;
import io.jsonwebtoken.security.PublicJwk;
import io.jsonwebtoken.security.Request;
import io.jsonwebtoken.security.SecureRequest;
import io.jsonwebtoken.security.SecurityException;
import javax.crypto.KeyAgreement;
import javax.crypto.SecretKey;
import java.nio.charset.StandardCharsets;
import java.security.Key;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.Provider;
import java.security.PublicKey;
import java.security.SecureRandom;
import java.security.interfaces.ECKey;
/**
* @since 0.12.0
*/
class EcdhKeyAlgorithm extends CryptoAlgorithm implements KeyAlgorithm {
protected static final String JCA_NAME = "ECDH";
protected static final String XDH_JCA_NAME = "XDH";
protected static final String DEFAULT_ID = JCA_NAME + "-ES";
// Per https://www.rfc-editor.org/rfc/rfc7518.html#section-4.6.2, 2nd paragraph:
// Key derivation is performed using the Concat KDF, as defined in
// Section 5.8.1 of [NIST.800-56A](https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf),
// where the Digest Method is SHA-256.
private static final String CONCAT_KDF_HASH_ALG_NAME = "SHA-256";
private static final ConcatKDF CONCAT_KDF = new ConcatKDF(CONCAT_KDF_HASH_ALG_NAME);
private final KeyAlgorithm WRAP_ALG;
private static String idFor(KeyAlgorithm wrapAlg) {
return wrapAlg instanceof DirectKeyAlgorithm ? DEFAULT_ID : DEFAULT_ID + "+" + wrapAlg.getId();
}
EcdhKeyAlgorithm() {
// default ECDH-ES doesn't do a wrap, so we use DirectKeyAlgorithm which is a no-op. That is, we're using
// the Null Object Design Pattern so we don't have to check for null depending on if key wrapping is used or not
this(new DirectKeyAlgorithm());
}
EcdhKeyAlgorithm(KeyAlgorithm wrapAlg) {
super(idFor(wrapAlg), JCA_NAME);
this.WRAP_ALG = Assert.notNull(wrapAlg, "Wrap algorithm cannot be null.");
}
//visible for testing, for Edwards elliptic curves
protected KeyPair generateKeyPair(Curve curve, Provider provider, SecureRandom random) {
return curve.keyPair().provider(provider).random(random).build();
}
protected byte[] generateZ(final KeyRequest> request, final PublicKey pub, final PrivateKey priv) {
return jca(request).withKeyAgreement(new CheckedFunction() {
@Override
public byte[] apply(KeyAgreement keyAgreement) throws Exception {
keyAgreement.init(KeysBridge.root(priv), ensureSecureRandom(request));
keyAgreement.doPhase(pub, true);
return keyAgreement.generateSecret();
}
});
}
protected String getConcatKDFAlgorithmId(AeadAlgorithm enc) {
return this.WRAP_ALG instanceof DirectKeyAlgorithm ? Assert.hasText(enc.getId(),
"AeadAlgorithm id cannot be null or empty.") : getId();
}
private byte[] createOtherInfo(int keydatalen, String AlgorithmID, byte[] PartyUInfo, byte[] PartyVInfo) {
// https://www.rfc-editor.org/rfc/rfc7518.html#section-4.6.2 "AlgorithmID":
Assert.hasText(AlgorithmID, "AlgorithmId cannot be null or empty.");
byte[] algIdBytes = AlgorithmID.getBytes(StandardCharsets.US_ASCII);
PartyUInfo = Arrays.length(PartyUInfo) == 0 ? Bytes.EMPTY : PartyUInfo; // ensure not null
PartyVInfo = Arrays.length(PartyVInfo) == 0 ? Bytes.EMPTY : PartyVInfo; // ensure not null
// Values and order defined in https://www.rfc-editor.org/rfc/rfc7518.html#section-4.6.2 and
// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf section 5.8.1.2 :
return Bytes.concat(Bytes.toBytes(algIdBytes.length), algIdBytes, // AlgorithmID
Bytes.toBytes(PartyUInfo.length), PartyUInfo, // PartyUInfo
Bytes.toBytes(PartyVInfo.length), PartyVInfo, // PartyVInfo
Bytes.toBytes(keydatalen), // SuppPubInfo per https://www.rfc-editor.org/rfc/rfc7518.html#section-4.6.2
Bytes.EMPTY // SuppPrivInfo empty per https://www.rfc-editor.org/rfc/rfc7518.html#section-4.6.2
);
}
private int getKeyBitLength(AeadAlgorithm enc) {
int bitLength = this.WRAP_ALG instanceof KeyLengthSupplier ?
((KeyLengthSupplier) this.WRAP_ALG).getKeyBitLength() : enc.getKeyBitLength();
return Assert.gt(bitLength, 0, "Algorithm keyBitLength must be > 0");
}
private SecretKey deriveKey(KeyRequest> request, PublicKey publicKey, PrivateKey privateKey) {
AeadAlgorithm enc = Assert.notNull(request.getEncryptionAlgorithm(),
"Request encryptionAlgorithm cannot be null.");
int requiredCekBitLen = getKeyBitLength(enc);
final String AlgorithmID = getConcatKDFAlgorithmId(enc);
byte[] apu = request.getHeader().getAgreementPartyUInfo();
byte[] apv = request.getHeader().getAgreementPartyVInfo();
byte[] OtherInfo = createOtherInfo(requiredCekBitLen, AlgorithmID, apu, apv);
byte[] Z = generateZ(request, publicKey, privateKey);
try {
return CONCAT_KDF.deriveKey(Z, requiredCekBitLen, OtherInfo);
} finally {
Bytes.clear(Z);
}
}
@Override
protected String getJcaName(Request> request) {
if (request instanceof SecureRequest) {
return ((SecureRequest, ?>) request).getKey() instanceof ECKey ? super.getJcaName(request) : XDH_JCA_NAME;
} else {
return request.getPayload() instanceof ECKey ? super.getJcaName(request) : XDH_JCA_NAME;
}
}
private static AbstractCurve assertCurve(Key key) {
Curve curve = StandardCurves.findByKey(key);
if (curve == null) {
String type = key instanceof PublicKey ? "encryption " : "decryption ";
String msg = "Unable to determine JWA-standard Elliptic Curve for " + type + "key [" +
KeysBridge.toString(key) + "]";
throw new InvalidKeyException(msg);
}
if (curve instanceof EdwardsCurve && ((EdwardsCurve) curve).isSignatureCurve()) {
String msg = curve.getId() + " keys may not be used with ECDH-ES key agreement algorithms per " +
"https://www.rfc-editor.org/rfc/rfc8037#section-3.1.";
throw new InvalidKeyException(msg);
}
return Assert.isInstanceOf(AbstractCurve.class, curve, "AbstractCurve instance expected.");
}
@Override
public KeyResult getEncryptionKey(KeyRequest request) throws SecurityException {
Assert.notNull(request, "Request cannot be null.");
JweHeader header = Assert.notNull(request.getHeader(), "Request JweHeader cannot be null.");
PublicKey publicKey = Assert.notNull(request.getPayload(), "Encryption PublicKey cannot be null.");
Curve curve = assertCurve(publicKey);
// note: we don't need to validate if specified key's point is on a supported curve here
// because that will automatically be asserted when using Jwks.builder().... below
Assert.stateNotNull(curve, "Internal implementation state: Curve cannot be null.");
// Generate our ephemeral key pair:
final SecureRandom random = ensureSecureRandom(request);
DynamicJwkBuilder, ?> jwkBuilder = Jwks.builder().random(random);
KeyPair pair = generateKeyPair(curve, null, random);
Assert.stateNotNull(pair, "Internal implementation state: KeyPair cannot be null.");
// This asserts that the generated public key (and therefore the request key) is on a JWK-supported curve:
PublicJwk> jwk = jwkBuilder.key(pair.getPublic()).build();
final SecretKey derived = deriveKey(request, publicKey, pair.getPrivate());
KeyRequest wrapReq = new DefaultKeyRequest<>(derived, request.getProvider(),
request.getSecureRandom(), request.getHeader(), request.getEncryptionAlgorithm());
KeyResult result = WRAP_ALG.getEncryptionKey(wrapReq);
header.put(DefaultJweHeader.EPK.getId(), jwk);
return result;
}
@Override
public SecretKey getDecryptionKey(DecryptionKeyRequest request) throws SecurityException {
Assert.notNull(request, "Request cannot be null.");
JweHeader header = Assert.notNull(request.getHeader(), "Request JweHeader cannot be null.");
PrivateKey privateKey = Assert.notNull(request.getKey(), "Decryption PrivateKey cannot be null.");
ParameterReadable reader = new RequiredParameterReader(header);
PublicJwk> epk = reader.get(DefaultJweHeader.EPK);
AbstractCurve curve = assertCurve(privateKey);
Assert.stateNotNull(curve, "Internal implementation state: Curve cannot be null.");
Class> epkClass = curve instanceof ECCurve ? EcPublicJwk.class : OctetPublicJwk.class;
if (!epkClass.isInstance(epk)) {
String msg = "JWE Header " + DefaultJweHeader.EPK + " value is not an Elliptic Curve " +
"Public JWK. Value: " + epk;
throw new InvalidKeyException(msg);
}
if (!curve.contains(epk.toKey())) {
String msg = "JWE Header " + DefaultJweHeader.EPK + " value does not represent " +
"a point on the expected curve. Value: " + epk;
throw new InvalidKeyException(msg);
}
final SecretKey derived = deriveKey(request, epk.toKey(), privateKey);
DecryptionKeyRequest unwrapReq = new DefaultDecryptionKeyRequest<>(request.getPayload(),
null, request.getSecureRandom(), header, request.getEncryptionAlgorithm(), derived);
return WRAP_ALG.getDecryptionKey(unwrapReq);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy