kamon.jsr166.Striped64 Maven / Gradle / Ivy
/*
* Copyright 2013-2021 The Kamon Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package kamon.jsr166;
import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;
import java.util.function.DoubleBinaryOperator;
import java.util.function.LongBinaryOperator;
/**
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*
*
* A package-local class holding common representation and mechanics
* for classes supporting dynamic striping on 64bit values. The class
* extends Number so that concrete subclasses must publicly do so.
*/
@SuppressWarnings("serial")
abstract class Striped64 extends Number {
/*
* This class maintains a lazily-initialized table of atomically
* updated variables, plus an extra "base" field. The table size
* is a power of two. Indexing uses masked per-thread hash codes.
* Nearly all declarations in this class are package-private,
* accessed directly by subclasses.
*
* Table entries are of class Cell; a variant of AtomicLong padded
* (via @Contended) to reduce cache contention. Padding is
* overkill for most Atomics because they are usually irregularly
* scattered in memory and thus don't interfere much with each
* other. But Atomic objects residing in arrays will tend to be
* placed adjacent to each other, and so will most often share
* cache lines (with a huge negative performance impact) without
* this precaution.
*
* In part because Cells are relatively large, we avoid creating
* them until they are needed. When there is no contention, all
* updates are made to the base field. Upon first contention (a
* failed CAS on base update), the table is initialized to size 2.
* The table size is doubled upon further contention until
* reaching the nearest power of two greater than or equal to the
* number of CPUS. Table slots remain empty (null) until they are
* needed.
*
* A single spinlock ("cellsBusy") is used for initializing and
* resizing the table, as well as populating slots with new Cells.
* There is no need for a blocking lock; when the lock is not
* available, threads try other slots (or the base). During these
* retries, there is increased contention and reduced locality,
* which is still better than alternatives.
*
* The Thread probe fields maintained via ThreadLocalRandom serve
* as per-thread hash codes. We let them remain uninitialized as
* zero (if they come in this way) until they contend at slot
* 0. They are then initialized to values that typically do not
* often conflict with others. Contention and/or table collisions
* are indicated by failed CASes when performing an update
* operation. Upon a collision, if the table size is less than
* the capacity, it is doubled in size unless some other thread
* holds the lock. If a hashed slot is empty, and lock is
* available, a new Cell is created. Otherwise, if the slot
* exists, a CAS is tried. Retries proceed by "double hashing",
* using a secondary hash (Marsaglia XorShift) to try to find a
* free slot.
*
* The table size is capped because, when there are more threads
* than CPUs, supposing that each thread were bound to a CPU,
* there would exist a perfect hash function mapping threads to
* slots that eliminates collisions. When we reach capacity, we
* search for this mapping by randomly varying the hash codes of
* colliding threads. Because search is random, and collisions
* only become known via CAS failures, convergence can be slow,
* and because threads are typically not bound to CPUS forever,
* may not occur at all. However, despite these limitations,
* observed contention rates are typically low in these cases.
*
* It is possible for a Cell to become unused when threads that
* once hashed to it terminate, as well as in the case where
* doubling the table causes no thread to hash to it under
* expanded mask. We do not try to detect or remove such cells,
* under the assumption that for long-running instances, observed
* contention levels will recur, so the cells will eventually be
* needed again; and for short-lived ones, it does not matter.
*/
/**
* Padded variant of AtomicLong supporting only raw accesses plus CAS.
*
* JVM intrinsics note: It would be possible to use a release-only
* form of CAS here, if it were provided.
*/
@sun.misc.Contended static final class Cell {
volatile long value;
Cell(long x) { value = x; }
final boolean cas(long cmp, long val) {
return U.compareAndSwapLong(this, VALUE, cmp, val);
}
final void reset() {
U.putLongVolatile(this, VALUE, 0L);
}
final void reset(long identity) {
U.putLongVolatile(this, VALUE, identity);
}
// Unsafe mechanics
private static final sun.misc.Unsafe U;
private static final long VALUE;
static {
try {
U = getUnsafe();
VALUE = U.objectFieldOffset
(Cell.class.getDeclaredField("value"));
} catch (ReflectiveOperationException e) {
throw new Error(e);
}
}
final long getAndSet(long val) {
return U.getAndSetLong(this, VALUE, val);
}
}
/** Number of CPUS, to place bound on table size */
static final int NCPU = Runtime.getRuntime().availableProcessors();
/**
* Table of cells. When non-null, size is a power of 2.
*/
transient volatile Cell[] cells;
/**
* Base value, used mainly when there is no contention, but also as
* a fallback during table initialization races. Updated via CAS.
*/
transient volatile long base;
/**
* Spinlock (locked via CAS) used when resizing and/or creating Cells.
*/
transient volatile int cellsBusy;
/**
* Package-private default constructor.
*/
Striped64() {
}
/**
* CASes the base field.
*/
final long getAndSetBase(long val) {
return U.getAndSetLong(this, BASE, val);
}
/**
* CASes the base field.
*/
final boolean casBase(long cmp, long val) {
return U.compareAndSwapLong(this, BASE, cmp, val);
}
/**
* CASes the cellsBusy field from 0 to 1 to acquire lock.
*/
final boolean casCellsBusy() {
return U.compareAndSwapInt(this, CELLSBUSY, 0, 1);
}
/**
* Returns the probe value for the current thread.
* Duplicated from ThreadLocalRandom because of packaging restrictions.
*/
static final int getProbe() {
return U.getInt(Thread.currentThread(), PROBE);
}
/**
* Pseudo-randomly advances and records the given probe value for the
* given thread.
* Duplicated from ThreadLocalRandom because of packaging restrictions.
*/
static final int advanceProbe(int probe) {
probe ^= probe << 13; // xorshift
probe ^= probe >>> 17;
probe ^= probe << 5;
U.putInt(Thread.currentThread(), PROBE, probe);
return probe;
}
/**
* Handles cases of updates involving initialization, resizing,
* creating new Cells, and/or contention. See above for
* explanation. This method suffers the usual non-modularity
* problems of optimistic retry code, relying on rechecked sets of
* reads.
*
* @param x the value
* @param fn the update function, or null for add (this convention
* avoids the need for an extra field or function in LongAdder).
* @param wasUncontended false if CAS failed before call
*/
final void longAccumulate(long x, LongBinaryOperator fn,
boolean wasUncontended) {
int h;
if ((h = getProbe()) == 0) {
ThreadLocalRandom.current(); // force initialization
h = getProbe();
wasUncontended = true;
}
boolean collide = false; // True if last slot nonempty
done: for (;;) {
Cell[] as; Cell a; int n; long v;
if ((as = cells) != null && (n = as.length) > 0) {
if ((a = as[(n - 1) & h]) == null) {
if (cellsBusy == 0) { // Try to attach new Cell
Cell r = new Cell(x); // Optimistically create
if (cellsBusy == 0 && casCellsBusy()) {
try { // Recheck under lock
Cell[] rs; int m, j;
if ((rs = cells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
break done;
}
} finally {
cellsBusy = 0;
}
continue; // Slot is now non-empty
}
}
collide = false;
}
else if (!wasUncontended) // CAS already known to fail
wasUncontended = true; // Continue after rehash
else if (a.cas(v = a.value,
(fn == null) ? v + x : fn.applyAsLong(v, x)))
break;
else if (n >= NCPU || cells != as)
collide = false; // At max size or stale
else if (!collide)
collide = true;
else if (cellsBusy == 0 && casCellsBusy()) {
try {
if (cells == as) // Expand table unless stale
cells = Arrays.copyOf(as, n << 1);
} finally {
cellsBusy = 0;
}
collide = false;
continue; // Retry with expanded table
}
h = advanceProbe(h);
}
else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
try { // Initialize table
if (cells == as) {
Cell[] rs = new Cell[2];
rs[h & 1] = new Cell(x);
cells = rs;
break done;
}
} finally {
cellsBusy = 0;
}
}
// Fall back on using base
else if (casBase(v = base,
(fn == null) ? v + x : fn.applyAsLong(v, x)))
break done;
}
}
private static long apply(DoubleBinaryOperator fn, long v, double x) {
double d = Double.longBitsToDouble(v);
d = (fn == null) ? d + x : fn.applyAsDouble(d, x);
return Double.doubleToRawLongBits(d);
}
/**
* Same as longAccumulate, but injecting long/double conversions
* in too many places to sensibly merge with long version, given
* the low-overhead requirements of this class. So must instead be
* maintained by copy/paste/adapt.
*/
final void doubleAccumulate(double x, DoubleBinaryOperator fn,
boolean wasUncontended) {
int h;
if ((h = getProbe()) == 0) {
ThreadLocalRandom.current(); // force initialization
h = getProbe();
wasUncontended = true;
}
boolean collide = false; // True if last slot nonempty
done: for (;;) {
Cell[] as; Cell a; int n; long v;
if ((as = cells) != null && (n = as.length) > 0) {
if ((a = as[(n - 1) & h]) == null) {
if (cellsBusy == 0) { // Try to attach new Cell
Cell r = new Cell(Double.doubleToRawLongBits(x));
if (cellsBusy == 0 && casCellsBusy()) {
try { // Recheck under lock
Cell[] rs; int m, j;
if ((rs = cells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
break done;
}
} finally {
cellsBusy = 0;
}
continue; // Slot is now non-empty
}
}
collide = false;
}
else if (!wasUncontended) // CAS already known to fail
wasUncontended = true; // Continue after rehash
else if (a.cas(v = a.value, apply(fn, v, x)))
break;
else if (n >= NCPU || cells != as)
collide = false; // At max size or stale
else if (!collide)
collide = true;
else if (cellsBusy == 0 && casCellsBusy()) {
try {
if (cells == as) // Expand table unless stale
cells = Arrays.copyOf(as, n << 1);
} finally {
cellsBusy = 0;
}
collide = false;
continue; // Retry with expanded table
}
h = advanceProbe(h);
}
else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
try { // Initialize table
if (cells == as) {
Cell[] rs = new Cell[2];
rs[h & 1] = new Cell(Double.doubleToRawLongBits(x));
cells = rs;
break done;
}
} finally {
cellsBusy = 0;
}
}
// Fall back on using base
else if (casBase(v = base, apply(fn, v, x)))
break done;
}
}
// Unsafe mechanics
private static final sun.misc.Unsafe U;
private static final long BASE;
private static final long CELLSBUSY;
private static final long PROBE;
static {
try {
U = getUnsafe();
BASE = U.objectFieldOffset
(Striped64.class.getDeclaredField("base"));
CELLSBUSY = U.objectFieldOffset
(Striped64.class.getDeclaredField("cellsBusy"));
PROBE = U.objectFieldOffset
(Thread.class.getDeclaredField("threadLocalRandomProbe"));
} catch (ReflectiveOperationException e) {
throw new Error(e);
}
}
/**
* Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
* Replace with a simple call to Unsafe.getUnsafe when integrating
* into a jdk.
*
* @return a sun.misc.Unsafe
*/
private static sun.misc.Unsafe getUnsafe() {
try {
return sun.misc.Unsafe.getUnsafe();
} catch (SecurityException tryReflectionInstead) {}
try {
return java.security.AccessController.doPrivileged
(new java.security.PrivilegedExceptionAction() {
public sun.misc.Unsafe run() throws Exception {
Class k = sun.misc.Unsafe.class;
for (java.lang.reflect.Field f : k.getDeclaredFields()) {
f.setAccessible(true);
Object x = f.get(null);
if (k.isInstance(x))
return k.cast(x);
}
throw new NoSuchFieldError("the Unsafe");
}});
} catch (java.security.PrivilegedActionException e) {
throw new RuntimeException("Could not initialize intrinsics",
e.getCause());
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy