org.hyperic.sigar.util.PrintfFormat Maven / Gradle / Ivy
// // (c) 2000 Sun Microsystems, Inc. // ALL RIGHTS RESERVED // // License Grant- // // // Permission to use, copy, modify, and distribute this Software and its // documentation for NON-COMMERCIAL or COMMERCIAL purposes and without fee is // hereby granted. // // This Software is provided "AS IS". All express warranties, including any // implied warranty of merchantability, satisfactory quality, fitness for a // particular purpose, or non-infringement, are disclaimed, except to the extent // that such disclaimers are held to be legally invalid. // // You acknowledge that Software is not designed, licensed or intended for use in // the design, construction, operation or maintenance of any nuclear facility // ("High Risk Activities"). Sun disclaims any express or implied warranty of // fitness for such uses. // // Please refer to the file http://www.sun.com/policies/trademarks/ for further // important trademark information and to // http://java.sun.com/nav/business/index.html for further important licensing // information for the Java Technology. // package org.hyperic.sigar.util; import java.util.Enumeration; import java.util.Vector; import java.util.Locale; import java.text.DecimalFormatSymbols; /** * PrintfFormat allows the formatting of an array of * objects embedded within a string. Primitive types * must be passed using wrapper types. The formatting * is controlled by a control string. *
and ending at either the end * of the String* A control string is a Java string that contains a * control specification. The control specification * starts at the first percent sign (%) in the string, * provided that this percent sign *
*
*- is not escaped protected by a matching % or is * not an escape % character, *
- is not at the end of the format string, and *
- precedes a sequence of characters that parses as * a valid control specification. *
* A control specification usually takes the form: *
% ['-+ #0]* [0..9]* { . [0..9]* }+ * { [hlL] }+ [idfgGoxXeEcs] ** There are variants of this basic form that are * discussed below. ** The format is composed of zero or more directives * defined as follows: *
*
*- ordinary characters, which are simply copied to * the output stream; *
- escape sequences, which represent non-graphic * characters; and *
- conversion specifications, each of which * results in the fetching of zero or more arguments. *
* The results are undefined if there are insufficient * arguments for the format. Usually an unchecked * exception will be thrown. If the format is * exhausted while arguments remain, the excess * arguments are evaluated but are otherwise ignored. * In format strings containing the % form of * conversion specifications, each argument in the * argument list is used exactly once.
** Conversions can be applied to the
*n
th * argument after the format in the argument list, * rather than to the next unused argument. In this * case, the conversion characer % is replaced by the * sequence %n
$, wheren
is * a decimal integer giving the position of the * argument in the argument list.* In format strings containing the %
* *n
$ * form of conversion specifications, each argument * in the argument list is used exactly once.Escape Sequences
** The following table lists escape sequences and * associated actions on display devices capable of * the action. *
*
** Sequence *Name *Description * \\ backlash None. * * \a alert Attempts to alert * the user through audible or visible * notification. * * \b backspace Moves the * printing position to one column before * the current position, unless the * current position is the start of a line. * * \f form-feed Moves the * printing position to the initial * printing position of the next logical * page. * * \n newline Moves the * printing position to the start of the * next line. * * \r carriage-return Moves * the printing position to the start of * the current line. * * \t tab Moves the printing * position to the next implementation- * defined horizontal tab position. * * \v vertical-tab Moves the * printing position to the start of the * next implementation-defined vertical * tab position. * Conversion Specifications
** Each conversion specification is introduced by * the percent sign character (%). After the character * %, the following appear in sequence:
** Zero or more flags (in any order), which modify the * meaning of the conversion specification.
** An optional minimum field width. If the converted * value has fewer characters than the field width, it * will be padded with spaces by default on the left; * t will be padded on the right, if the left- * adjustment flag (-), described below, is given to * the field width. The field width takes the form * of a decimal integer. If the conversion character * is s, the field width is the the minimum number of * characters to be printed.
** An optional precision that gives the minumum number * of digits to appear for the d, i, o, x or X * conversions (the field is padded with leading * zeros); the number of digits to appear after the * radix character for the e, E, and f conversions, * the maximum number of significant digits for the g * and G conversions; or the maximum number of * characters to be written from a string is s and S * conversions. The precision takes the form of an * optional decimal digit string, where a null digit * string is treated as 0. If a precision appears * with a c conversion character the precision is * ignored. *
** An optional h specifies that a following d, i, o, * x, or X conversion character applies to a type * short argument (the argument will be promoted * according to the integral promotions and its value * converted to type short before printing).
** An optional l (ell) specifies that a following * d, i, o, x, or X conversion character applies to a * type long argument.
** A field width or precision may be indicated by an * asterisk (*) instead of a digit string. In this * case, an integer argument supplised the field width * precision. The argument that is actually converted * is not fetched until the conversion letter is seen, * so the the arguments specifying field width or * precision must appear before the argument (if any) * to be converted. If the precision argument is * negative, it will be changed to zero. A negative * field width argument is taken as a - flag, followed * by a positive field width.
** In format strings containing the %
*n
$ * form of a conversion specification, a field width * or precision may be indicated by the sequence * *m
$, where m is a decimal integer * giving the position in the argument list (after the * format argument) of an integer argument containing * the field width or precision.* The format can contain either numbered argument * specifications (that is, %
* *n
$ and * *m
$), or unnumbered argument * specifications (that is % and *), but normally not * both. The only exception to this is that %% can * be mixed with the %n
$ form. The * results of mixing numbered and unnumbered argument * specifications in a format string are undefined.Flag Characters
** The flags and their meanings are:
**
* *- '
- integer portion of the result of a * decimal conversion (%i, %d, %f, %g, or %G) will * be formatted with thousands' grouping * characters. For other conversions the flag * is ignored. The non-monetary grouping * character is used. *
- -
- result of the conversion is left-justified * within the field. (It will be right-justified * if this flag is not specified). *
- +
- result of a signed conversion always * begins with a sign (+ or -). (It will begin * with a sign only when a negative value is * converted if this flag is not specified.) *
- <space>
- If the first character of a * signed conversion is not a sign, a space * character will be placed before the result. * This means that if the space character and + * flags both appear, the space flag will be * ignored. *
- #
- value is to be converted to an alternative * form. For c, d, i, and s conversions, the flag * has no effect. For o conversion, it increases * the precision to force the first digit of the * result to be a zero. For x or X conversion, a * non-zero result has 0x or 0X prefixed to it, * respectively. For e, E, f, g, and G * conversions, the result always contains a radix * character, even if no digits follow the radix * character (normally, a decimal point appears in * the result of these conversions only if a digit * follows it). For g and G conversions, trailing * zeros will not be removed from the result as * they normally are. *
- 0
- d, i, o, x, X, e, E, f, g, and G * conversions, leading zeros (following any * indication of sign or base) are used to pad to * the field width; no space padding is * performed. If the 0 and - flags both appear, * the 0 flag is ignored. For d, i, o, x, and X * conversions, if a precision is specified, the * 0 flag will be ignored. For c conversions, * the flag is ignored. *
Conversion Characters
** Each conversion character results in fetching zero * or more arguments. The results are undefined if * there are insufficient arguments for the format. * Usually, an unchecked exception will be thrown. * If the format is exhausted while arguments remain, * the excess arguments are ignored.
* ** The conversion characters and their meanings are: *
**
*- d,i
- The int argument is converted to a * signed decimal in the style [-]dddd. The * precision specifies the minimum number of * digits to appear; if the value being * converted can be represented in fewer * digits, it will be expanded with leading * zeros. The default precision is 1. The * result of converting 0 with an explicit * precision of 0 is no characters. *
- o
- The int argument is converted to unsigned * octal format in the style ddddd. The * precision specifies the minimum number of * digits to appear; if the value being * converted can be represented in fewer * digits, it will be expanded with leading * zeros. The default precision is 1. The * result of converting 0 with an explicit * precision of 0 is no characters. *
- x
- The int argument is converted to unsigned * hexadecimal format in the style dddd; the * letters abcdef are used. The precision * specifies the minimum numberof digits to * appear; if the value being converted can be * represented in fewer digits, it will be * expanded with leading zeros. The default * precision is 1. The result of converting 0 * with an explicit precision of 0 is no * characters. *
- X
- Behaves the same as the x conversion * character except that letters ABCDEF are * used instead of abcdef. *
- f
- The floating point number argument is * written in decimal notation in the style * [-]ddd.ddd, where the number of digits after * the radix character (shown here as a decimal * point) is equal to the precision * specification. A Locale is used to determine * the radix character to use in this format. * If the precision is omitted from the * argument, six digits are written after the * radix character; if the precision is * explicitly 0 and the # flag is not specified, * no radix character appears. If a radix * character appears, at least 1 digit appears * before it. The value is rounded to the * appropriate number of digits. *
- e,E
- The floating point number argument is * written in the style [-]d.ddde{+-}dd * (the symbols {+-} indicate either a plus or * minus sign), where there is one digit before * the radix character (shown here as a decimal * point) and the number of digits after it is * equal to the precision. A Locale is used to * determine the radix character to use in this * format. When the precision is missing, six * digits are written after the radix character; * if the precision is 0 and the # flag is not * specified, no radix character appears. The * E conversion will produce a number with E * instead of e introducing the exponent. The * exponent always contains at least two digits. * However, if the value to be written requires * an exponent greater than two digits, * additional exponent digits are written as * necessary. The value is rounded to the * appropriate number of digits. *
- g,G
- The floating point number argument is * written in style f or e (or in sytle E in the * case of a G conversion character), with the * precision specifying the number of * significant digits. If the precision is * zero, it is taken as one. The style used * depends on the value converted: style e * (or E) will be used only if the exponent * resulting from the conversion is less than * -4 or greater than or equal to the precision. * Trailing zeros are removed from the result. * A radix character appears only if it is * followed by a digit. *
- c,C
- The integer argument is converted to a * char and the result is written. * *
- s,S
- The argument is taken to be a string and * bytes from the string are written until the * end of the string or the number of bytes * indicated by the precision specification of * the argument is reached. If the precision * is omitted from the argument, it is taken to * be infinite, so all characters up to the end * of the string are written. *
- %
- Write a % character; no argument is * converted. *
* If a conversion specification does not match one of * the above forms, an IllegalArgumentException is * thrown and the instance of PrintfFormat is not * created.
** If a floating point value is the internal * representation for infinity, the output is * [+]Infinity, where Infinity is either Infinity or * Inf, depending on the desired output string length. * Printing of the sign follows the rules described * above.
** If a floating point value is the internal * representation for "not-a-number," the output is * [+]NaN. Printing of the sign follows the rules * described above.
** In no case does a non-existent or small field width * cause truncation of a field; if the result of a * conversion is wider than the field width, the field * is simply expanded to contain the conversion result. *
** The behavior is like printf. One exception is that * the minimum number of exponent digits is 3 instead * of 2 for e and E formats when the optional L is used * before the e, E, g, or G conversion character. The * optional L does not imply conversion to a long long * double.
** The biggest divergence from the C printf * specification is in the use of 16 bit characters. * This allows the handling of characters beyond the * small ASCII character set and allows the utility to * interoperate correctly with the rest of the Java * runtime environment.
** Omissions from the C printf specification are * numerous. All the known omissions are present * because Java never uses bytes to represent * characters and does not have pointers:
**
*- %c is the same as %C. *
- %s is the same as %S. *
- u, p, and n conversion characters. *
- %ws format. *
- h modifier applied to an n conversion character. *
- l (ell) modifier applied to the c, n, or s * conversion characters. *
- ll (ell ell) modifier to d, i, o, u, x, or X * conversion characters. *
- ll (ell ell) modifier to an n conversion * character. *
- c, C, d,i,o,u,x, and X conversion characters * apply to Byte, Character, Short, Integer, Long * types. *
- f, e, E, g, and G conversion characters apply * to Float and Double types. *
- s and S conversion characters apply to String * types. *
- All other reference types can be formatted * using the s or S conversion characters only. *
* Most of this specification is quoted from the Unix * man page for the sprintf utility.
* (c) 2000 Sun Microsystems, Inc. * @author Allan Jacobs * @version 1 * Release 1: Initial release. * Release 2: Asterisk field widths and precisions * %n$ and *m$ * Bug fixes * g format fix (2 digits in e form corrupt) * rounding in f format implemented * round up when digit not printed is 5 * formatting of -0.0f * round up/down when last digits are 50000... */ public class PrintfFormat { /** * Constructs an array of control specifications * possibly preceded, separated, or followed by * ordinary strings. Control strings begin with * unpaired percent signs. A pair of successive * percent signs designates a single percent sign in * the format. * @param fmtArg Control string. * @exception IllegalArgumentException if the control * string is null, zero length, or otherwise * malformed. */ public PrintfFormat(String fmtArg) throws IllegalArgumentException { this(Locale.getDefault(),fmtArg); } /** * Constructs an array of control specifications * possibly preceded, separated, or followed by * ordinary strings. Control strings begin with * unpaired percent signs. A pair of successive * percent signs designates a single percent sign in * the format. * @param fmtArg Control string. * @exception IllegalArgumentException if the control * string is null, zero length, or otherwise * malformed. */ public PrintfFormat(Locale locale,String fmtArg) throws IllegalArgumentException { dfs = new DecimalFormatSymbols(locale); int ePos=0; ConversionSpecification sFmt=null; String unCS = this.nonControl(fmtArg,0); if (unCS!=null) { sFmt = new ConversionSpecification(); sFmt.setLiteral(unCS); vFmt.addElement(sFmt); } while(cPos!=-1 && cPosstart s
, the next unpaired * percent sign, or at the end of the String if the * last character is a percent sign. * @param s Control string. * @param start Position in the string *s
to begin looking for the start * of a control string. * @return the substring from the start position * to the beginning of the control string. */ private String nonControl(String s,int start) { cPos=s.indexOf("%",start); if (cPos==-1) cPos=s.length(); return s.substring(start,cPos); } /** * Format an array of objects. Byte, Short, * Integer, Long, Float, Double, and Character * arguments are treated as wrappers for primitive * types. * @param o The array of objects to format. * @return The formatted String. */ public String sprintf(Object[] o) { Enumeration e = vFmt.elements(); ConversionSpecification cs = null; char c = 0; int i=0; StringBuffer sb=new StringBuffer(); while (e.hasMoreElements()) { cs = (ConversionSpecification) e.nextElement(); c = cs.getConversionCharacter(); if (c=='\0') sb.append(cs.getLiteral()); else if (c=='%') sb.append("%"); else { if (cs.isPositionalSpecification()) { i=cs.getArgumentPosition()-1; if (cs.isPositionalFieldWidth()) { int ifw=cs.getArgumentPositionForFieldWidth()-1; cs.setFieldWidthWithArg(((Integer)o[ifw]).intValue()); } if (cs.isPositionalPrecision()) { int ipr=cs.getArgumentPositionForPrecision()-1; cs.setPrecisionWithArg(((Integer)o[ipr]).intValue()); } } else { if (cs.isVariableFieldWidth()) { cs.setFieldWidthWithArg(((Integer)o[i]).intValue()); i++; } if (cs.isVariablePrecision()) { cs.setPrecisionWithArg(((Integer)o[i]).intValue()); i++; } } if (o[i] instanceof Byte) sb.append(cs.internalsprintf( ((Byte)o[i]).byteValue())); else if (o[i] instanceof Short) sb.append(cs.internalsprintf( ((Short)o[i]).shortValue())); else if (o[i] instanceof Integer) sb.append(cs.internalsprintf( ((Integer)o[i]).intValue())); else if (o[i] instanceof Long) sb.append(cs.internalsprintf( ((Long)o[i]).longValue())); else if (o[i] instanceof Float) sb.append(cs.internalsprintf( ((Float)o[i]).floatValue())); else if (o[i] instanceof Double) sb.append(cs.internalsprintf( ((Double)o[i]).doubleValue())); else if (o[i] instanceof Character) sb.append(cs.internalsprintf( ((Character)o[i]).charValue())); else if (o[i] instanceof String) sb.append(cs.internalsprintf( (String)o[i])); else sb.append(cs.internalsprintf( o[i])); if (!cs.isPositionalSpecification()) i++; } } return sb.toString(); } /** * Format nothing. Just use the control string. * @return the formatted String. */ public String sprintf() { Enumeration e = vFmt.elements(); ConversionSpecification cs = null; char c = 0; StringBuffer sb=new StringBuffer(); while (e.hasMoreElements()) { cs = (ConversionSpecification) e.nextElement(); c = cs.getConversionCharacter(); if (c=='\0') sb.append(cs.getLiteral()); else if (c=='%') sb.append("%"); } return sb.toString(); } /** * Format an int. * @param x The int to format. * @return The formatted String. * @exception IllegalArgumentException if the * conversion character is f, e, E, g, G, s, * or S. */ public String sprintf(int x) throws IllegalArgumentException { Enumeration e = vFmt.elements(); ConversionSpecification cs = null; char c = 0; StringBuffer sb=new StringBuffer(); while (e.hasMoreElements()) { cs = (ConversionSpecification) e.nextElement(); c = cs.getConversionCharacter(); if (c=='\0') sb.append(cs.getLiteral()); else if (c=='%') sb.append("%"); else sb.append(cs.internalsprintf(x)); } return sb.toString(); } /** * Format an long. * @param x The long to format. * @return The formatted String. * @exception IllegalArgumentException if the * conversion character is f, e, E, g, G, s, * or S. */ public String sprintf(long x) throws IllegalArgumentException { Enumeration e = vFmt.elements(); ConversionSpecification cs = null; char c = 0; StringBuffer sb=new StringBuffer(); while (e.hasMoreElements()) { cs = (ConversionSpecification) e.nextElement(); c = cs.getConversionCharacter(); if (c=='\0') sb.append(cs.getLiteral()); else if (c=='%') sb.append("%"); else sb.append(cs.internalsprintf(x)); } return sb.toString(); } /** * Format a double. * @param x The double to format. * @return The formatted String. * @exception IllegalArgumentException if the * conversion character is c, C, s, S, * d, d, x, X, or o. */ public String sprintf(double x) throws IllegalArgumentException { Enumeration e = vFmt.elements(); ConversionSpecification cs = null; char c = 0; StringBuffer sb=new StringBuffer(); while (e.hasMoreElements()) { cs = (ConversionSpecification) e.nextElement(); c = cs.getConversionCharacter(); if (c=='\0') sb.append(cs.getLiteral()); else if (c=='%') sb.append("%"); else sb.append(cs.internalsprintf(x)); } return sb.toString(); } /** * Format a String. * @param x The String to format. * @return The formatted String. * @exception IllegalArgumentException if the * conversion character is neither s nor S. */ public String sprintf(String x) throws IllegalArgumentException { Enumeration e = vFmt.elements(); ConversionSpecification cs = null; char c = 0; StringBuffer sb=new StringBuffer(); while (e.hasMoreElements()) { cs = (ConversionSpecification) e.nextElement(); c = cs.getConversionCharacter(); if (c=='\0') sb.append(cs.getLiteral()); else if (c=='%') sb.append("%"); else sb.append(cs.internalsprintf(x)); } return sb.toString(); } /** * Format an Object. Convert wrapper types to * their primitive equivalents and call the * appropriate internal formatting method. Convert * Strings using an internal formatting method for * Strings. Otherwise use the default formatter * (use toString). * @param x the Object to format. * @return the formatted String. * @exception IllegalArgumentException if the * conversion character is inappropriate for * formatting an unwrapped value. */ public String sprintf(Object x) throws IllegalArgumentException { Enumeration e = vFmt.elements(); ConversionSpecification cs = null; char c = 0; StringBuffer sb=new StringBuffer(); while (e.hasMoreElements()) { cs = (ConversionSpecification) e.nextElement(); c = cs.getConversionCharacter(); if (c=='\0') sb.append(cs.getLiteral()); else if (c=='%') sb.append("%"); else { if (x instanceof Byte) sb.append(cs.internalsprintf( ((Byte)x).byteValue())); else if (x instanceof Short) sb.append(cs.internalsprintf( ((Short)x).shortValue())); else if (x instanceof Integer) sb.append(cs.internalsprintf( ((Integer)x).intValue())); else if (x instanceof Long) sb.append(cs.internalsprintf( ((Long)x).longValue())); else if (x instanceof Float) sb.append(cs.internalsprintf( ((Float)x).floatValue())); else if (x instanceof Double) sb.append(cs.internalsprintf( ((Double)x).doubleValue())); else if (x instanceof Character) sb.append(cs.internalsprintf( ((Character)x).charValue())); else if (x instanceof String) sb.append(cs.internalsprintf( (String)x)); else sb.append(cs.internalsprintf(x)); } } return sb.toString(); } /** ** ConversionSpecification allows the formatting of * a single primitive or object embedded within a * string. The formatting is controlled by a * format string. Only one Java primitive or * object can be formatted at a time. *
* A format string is a Java string that contains * a control string. The control string starts at * the first percent sign (%) in the string, * provided that this percent sign *
*
*- is not escaped protected by a matching % or * is not an escape % character, *
- is not at the end of the format string, and *
- precedes a sequence of characters that parses * as a valid control string. *
* A control string takes the form: *
% ['-+ #0]* [0..9]* { . [0..9]* }+ * { [hlL] }+ [idfgGoxXeEcs] *** The behavior is like printf. One (hopefully the * only) exception is that the minimum number of * exponent digits is 3 instead of 2 for e and E * formats when the optional L is used before the * e, E, g, or G conversion character. The * optional L does not imply conversion to a long * long double. */ private class ConversionSpecification { /** * Constructor. Used to prepare an instance * to hold a literal, not a control string. */ ConversionSpecification() { } /** * Constructor for a conversion specification. * The argument must begin with a % and end * with the conversion character for the * conversion specification. * @param fmtArg String specifying the * conversion specification. * @exception IllegalArgumentException if the * input string is null, zero length, or * otherwise malformed. */ ConversionSpecification(String fmtArg) throws IllegalArgumentException { if (fmtArg==null) throw new NullPointerException(); if (fmtArg.length()==0) throw new IllegalArgumentException( "Control strings must have positive"+ " lengths."); if (fmtArg.charAt(0)=='%') { fmt = fmtArg; pos=1; setArgPosition(); setFlagCharacters(); setFieldWidth(); setPrecision(); setOptionalHL(); if (setConversionCharacter()) { if (pos==fmtArg.length()) { if(leadingZeros&&leftJustify) leadingZeros=false; if(precisionSet&&leadingZeros){ if(conversionCharacter=='d' ||conversionCharacter=='i' ||conversionCharacter=='o' ||conversionCharacter=='x') { leadingZeros=false; } } } else throw new IllegalArgumentException( "Malformed conversion specification="+ fmtArg); } else throw new IllegalArgumentException( "Malformed conversion specification="+ fmtArg); } else throw new IllegalArgumentException( "Control strings must begin with %."); } /** * Set the String for this instance. * @param s the String to store. */ void setLiteral(String s) { fmt = s; } /** * Get the String for this instance. Translate * any escape sequences. * * @return s the stored String. */ String getLiteral() { StringBuffer sb=new StringBuffer(); int i=0; while (i
true if the conversion * uses an * field width; otherwise * false
. */ boolean isVariableFieldWidth() { return variableFieldWidth; } /** * Set the field width with an argument. A * negative field width is taken as a - flag * followed by a positive field width. * @param fw the field width. */ void setFieldWidthWithArg(int fw) { if (fw<0) leftJustify = true; fieldWidthSet = true; fieldWidth = Math.abs(fw); } /** * Check whether the specifier has a variable * precision that is going to be set by an * argument. * @returntrue
if the conversion * uses an * precision; otherwise *false
. */ boolean isVariablePrecision() { return variablePrecision; } /** * Set the precision with an argument. A * negative precision will be changed to zero. * @param pr the precision. */ void setPrecisionWithArg(int pr) { precisionSet = true; precision = Math.max(pr,0); } /** * Format an int argument using this conversion * specification. * @param s the int to format. * @return the formatted String. * @exception IllegalArgumentException if the * conversion character is f, e, E, g, or G. */ String internalsprintf(int s) throws IllegalArgumentException { String s2 = ""; switch(conversionCharacter) { case 'd': case 'i': if (optionalh) s2 = printDFormat((short)s); else if (optionall) s2 = printDFormat((long)s); else s2 = printDFormat(s); break; case 'x': case 'X': if (optionalh) s2 = printXFormat((short)s); else if (optionall) s2 = printXFormat((long)s); else s2 = printXFormat(s); break; case 'o': if (optionalh) s2 = printOFormat((short)s); else if (optionall) s2 = printOFormat((long)s); else s2 = printOFormat(s); break; case 'c': case 'C': s2 = printCFormat((char)s); break; default: throw new IllegalArgumentException( "Cannot format a int with a format using a "+ conversionCharacter+ " conversion character."); } return s2; } /** * Format a long argument using this conversion * specification. * @param s the long to format. * @return the formatted String. * @exception IllegalArgumentException if the * conversion character is f, e, E, g, or G. */ String internalsprintf(long s) throws IllegalArgumentException { String s2 = ""; switch(conversionCharacter) { case 'd': case 'i': if (optionalh) s2 = printDFormat((short)s); else if (optionall) s2 = printDFormat(s); else s2 = printDFormat((int)s); break; case 'x': case 'X': if (optionalh) s2 = printXFormat((short)s); else if (optionall) s2 = printXFormat(s); else s2 = printXFormat((int)s); break; case 'o': if (optionalh) s2 = printOFormat((short)s); else if (optionall) s2 = printOFormat(s); else s2 = printOFormat((int)s); break; case 'c': case 'C': s2 = printCFormat((char)s); break; default: throw new IllegalArgumentException( "Cannot format a long with a format using a "+ conversionCharacter+" conversion character."); } return s2; } /** * Format a double argument using this conversion * specification. * @param s the double to format. * @return the formatted String. * @exception IllegalArgumentException if the * conversion character is c, C, s, S, i, d, * x, X, or o. */ String internalsprintf(double s) throws IllegalArgumentException { String s2 = ""; switch(conversionCharacter) { case 'f': s2 = printFFormat(s); break; case 'E': case 'e': s2 = printEFormat(s); break; case 'G': case 'g': s2 = printGFormat(s); break; default: throw new IllegalArgumentException("Cannot "+ "format a double with a format using a "+ conversionCharacter+" conversion character."); } return s2; } /** * Format a String argument using this conversion * specification. * @param s the String to format. * @return the formatted String. * @exception IllegalArgumentException if the * conversion character is neither s nor S. */ String internalsprintf(String s) throws IllegalArgumentException { String s2 = ""; if(conversionCharacter=='s' || conversionCharacter=='S') s2 = printSFormat(s); else throw new IllegalArgumentException("Cannot "+ "format a String with a format using a "+ conversionCharacter+" conversion character."); return s2; } /** * Format an Object argument using this conversion * specification. * @param s the Object to format. * @return the formatted String. * @exception IllegalArgumentException if the * conversion character is neither s nor S. */ String internalsprintf(Object s) { if (s == null) { return ""; } String s2 = ""; if(conversionCharacter=='s' || conversionCharacter=='S') s2 = printSFormat(s.toString()); else throw new IllegalArgumentException( "Cannot format a String with a format using"+ " a "+conversionCharacter+ " conversion character."); return s2; } /** * For f format, the flag character '-', means that * the output should be left justified within the * field. The default is to pad with blanks on the * left. '+' character means that the conversion * will always begin with a sign (+ or -). The * blank flag character means that a non-negative * input will be preceded with a blank. If both * a '+' and a ' ' are specified, the blank flag * is ignored. The '0' flag character implies that * padding to the field width will be done with * zeros instead of blanks. * * The field width is treated as the minimum number * of characters to be printed. The default is to * add no padding. Padding is with blanks by * default. * * The precision, if set, is the number of digits * to appear after the radix character. Padding is * with trailing 0s. */ private char[] fFormatDigits(double x) { // int defaultDigits=6; String sx; int i,j,k; int n1In,n2In; int expon=0; boolean minusSign=false; if (x>0.0) sx = Double.toString(x); else if (x<0.0) { sx = Double.toString(-x); minusSign=true; } else { sx = Double.toString(x); if (sx.charAt(0)=='-') { minusSign=true; sx=sx.substring(1); } } int ePos = sx.indexOf('E'); int rPos = sx.indexOf('.'); if (rPos!=-1) n1In=rPos; else if (ePos!=-1) n1In=ePos; else n1In=sx.length(); if (rPos!=-1) { if (ePos!=-1) n2In = ePos-rPos-1; else n2In = sx.length()-rPos-1; } else n2In = 0; if (ePos!=-1) { int ie=ePos+1; expon=0; if (sx.charAt(ie)=='-') { for (++ie; ie0) { ca6 = new char[ca5.length+nThousands+lead]; ca6[0]=ca5[0]; for (i=lead,k=lead; i 0 && (dp-i)%3==0) { // ca6[k]=','; ca6[k]=dfs.getGroupingSeparator(); ca6[k+1]=ca5[i]; k+=2; } else { ca6[k]=ca5[i]; k++; } } for (; i 0.0) sx = Double.toString(x); else if (x<0.0) { sx = Double.toString(-x); minusSign=true; } else { sx = Double.toString(x); if (sx.charAt(0)=='-') { minusSign=true; sx=sx.substring(1); } } ePos = sx.indexOf('E'); if (ePos==-1) ePos = sx.indexOf('e'); rPos = sx.indexOf('.'); if (rPos!=-1) n1In=rPos; else if (ePos!=-1) n1In=ePos; else n1In=sx.length(); if (rPos!=-1) { if (ePos!=-1) n2In = ePos-rPos-1; else n2In = sx.length()-rPos-1; } else n2In = 0; if (ePos!=-1) { int ie=ePos+1; expon=0; if (sx.charAt(ie)=='-') { for (++ie; ie =100) { switch(expon/100) { case 1: ca2[i]='1'; break; case 2: ca2[i]='2'; break; case 3: ca2[i]='3'; break; case 4: ca2[i]='4'; break; case 5: ca2[i]='5'; break; case 6: ca2[i]='6'; break; case 7: ca2[i]='7'; break; case 8: ca2[i]='8'; break; case 9: ca2[i]='9'; break; } i++; } switch((expon%100)/10) { case 0: ca2[i]='0'; break; case 1: ca2[i]='1'; break; case 2: ca2[i]='2'; break; case 3: ca2[i]='3'; break; case 4: ca2[i]='4'; break; case 5: ca2[i]='5'; break; case 6: ca2[i]='6'; break; case 7: ca2[i]='7'; break; case 8: ca2[i]='8'; break; case 9: ca2[i]='9'; break; } i++; switch(expon%10) { case 0: ca2[i]='0'; break; case 1: ca2[i]='1'; break; case 2: ca2[i]='2'; break; case 3: ca2[i]='3'; break; case 4: ca2[i]='4'; break; case 5: ca2[i]='5'; break; case 6: ca2[i]='6'; break; case 7: ca2[i]='7'; break; case 8: ca2[i]='8'; break; case 9: ca2[i]='9'; break; } int nZeros=0; if (!leftJustify && leadingZeros) { int xThousands=0; if (thousands) { int xlead=0; if (ca2[0]=='+'||ca2[0]=='-'||ca2[0]==' ') xlead=1; int xdp=xlead; for (; xdp 0) { ca4 = new char[ca3.length+nThousands+lead]; ca4[0]=ca3[0]; for (i=lead,k=lead; i 0 && (dp-i)%3==0) { // ca4[k]=','; ca4[k]=dfs.getGroupingSeparator(); ca4[k+1]=ca3[i]; k+=2; } else { ca4[k]=ca3[i]; k++; } } for (; i true if the truncation forces * a round that will change the print */ private boolean checkForCarry(char[] ca1,int icarry) { boolean carry=false; if (icarry 0) { carry=(ca1[icarry-1]=='1'||ca1[icarry-1]=='3' ||ca1[icarry-1]=='5'||ca1[icarry-1]=='7' ||ca1[icarry-1]=='9'); } } } return carry; } /** * Start the symbolic carry process. The process * is not quite finished because the symbolic * carry may change the length of the string and * change the exponent (in e format). * @param cLast index of the last digit changed * by the round * @param cFirst index of the first digit allowed * to be changed by this phase of the round * @return true
if the carry forces * a round that will change the print still * more */ private boolean startSymbolicCarry( char[] ca,int cLast,int cFirst) { boolean carry=true; for (int i=cLast; carry && i>=cFirst; i--) { carry = false; switch(ca[i]) { case '0': ca[i]='1'; break; case '1': ca[i]='2'; break; case '2': ca[i]='3'; break; case '3': ca[i]='4'; break; case '4': ca[i]='5'; break; case '5': ca[i]='6'; break; case '6': ca[i]='7'; break; case '7': ca[i]='8'; break; case '8': ca[i]='9'; break; case '9': ca[i]='0'; carry=true; break; } } return carry; } /** * An intermediate routine on the way to creating * an e format String. The method decides whether * the input double value is an infinity, * not-a-number, or a finite double and formats * each type of input appropriately. * @param x the double value to be formatted. * @param eChar an 'e' or 'E' to use in the * converted double value. * @return the converted double value. */ private String eFormatString(double x,char eChar) { boolean noDigits=false; char[] ca4,ca5; if (Double.isInfinite(x)) { if (x==Double.POSITIVE_INFINITY) { if (leadingSign) ca4 = "+Inf".toCharArray(); else if (leadingSpace) ca4 = " Inf".toCharArray(); else ca4 = "Inf".toCharArray(); } else ca4 = "-Inf".toCharArray(); noDigits = true; } else if (Double.isNaN(x)) { if (leadingSign) ca4 = "+NaN".toCharArray(); else if (leadingSpace) ca4 = " NaN".toCharArray(); else ca4 = "NaN".toCharArray(); noDigits = true; } else ca4 = eFormatDigits(x,eChar); ca5 = applyFloatPadding(ca4,false); return new String(ca5); } /** * Apply zero or blank, left or right padding. * @param ca4 array of characters before padding is * finished * @param noDigits NaN or signed Inf * @return a padded array of characters */ private char[] applyFloatPadding( char[] ca4,boolean noDigits) { char[] ca5 = ca4; if (fieldWidthSet) { int i,j,nBlanks; if (leftJustify) { nBlanks = fieldWidth-ca4.length; if (nBlanks > 0) { ca5 = new char[ca4.length+nBlanks]; for (i=0; i0) { ca5 = new char[ca4.length+nBlanks]; for (i=0; i 0) { ca5 = new char[ca4.length+nBlanks]; i=0; j=0; if (ca4[0]=='-') { ca5[0]='-'; i++; j++; } for (int k=0; k =-4 && expon =0; i--) if (sy.charAt(i)!='0') break; if (i>=0 && sy.charAt(i)=='.') i--; if (i==-1) sz="0"; else if (!Character.isDigit(sy.charAt(i))) sz=sy.substring(0,i+1)+"0"; else sz=sy.substring(0,i+1); if (expon>=-4 && expon =-4 && expon =0) ret = " "+ret; ca4 = ret.toCharArray(); } // Pad with blanks or zeros. ca5 = applyFloatPadding(ca4,false); precision=savePrecision; return new String(ca5); } /** * Format method for the d conversion specifer and * short argument. * * For d format, the flag character '-', means that * the output should be left justified within the * field. The default is to pad with blanks on the * left. A '+' character means that the conversion * will always begin with a sign (+ or -). The * blank flag character means that a non-negative * input will be preceded with a blank. If both a * '+' and a ' ' are specified, the blank flag is * ignored. The '0' flag character implies that * padding to the field width will be done with * zeros instead of blanks. * * The field width is treated as the minimum number * of characters to be printed. The default is to * add no padding. Padding is with blanks by * default. * * The precision, if set, is the minimum number of * digits to appear. Padding is with leading 0s. * @param x the short to format. * @return the formatted String. */ private String printDFormat(short x) { return printDFormat(Short.toString(x)); } /** * Format method for the d conversion character and * long argument. * * For d format, the flag character '-', means that * the output should be left justified within the * field. The default is to pad with blanks on the * left. A '+' character means that the conversion * will always begin with a sign (+ or -). The * blank flag character means that a non-negative * input will be preceded with a blank. If both a * '+' and a ' ' are specified, the blank flag is * ignored. The '0' flag character implies that * padding to the field width will be done with * zeros instead of blanks. * * The field width is treated as the minimum number * of characters to be printed. The default is to * add no padding. Padding is with blanks by * default. * * The precision, if set, is the minimum number of * digits to appear. Padding is with leading 0s. * @param x the long to format. * @return the formatted String. */ private String printDFormat(long x) { return printDFormat(Long.toString(x)); } /** * Format method for the d conversion character and * int argument. * * For d format, the flag character '-', means that * the output should be left justified within the * field. The default is to pad with blanks on the * left. A '+' character means that the conversion * will always begin with a sign (+ or -). The * blank flag character means that a non-negative * input will be preceded with a blank. If both a * '+' and a ' ' are specified, the blank flag is * ignored. The '0' flag character implies that * padding to the field width will be done with * zeros instead of blanks. * * The field width is treated as the minimum number * of characters to be printed. The default is to * add no padding. Padding is with blanks by * default. * * The precision, if set, is the minimum number of * digits to appear. Padding is with leading 0s. * @param x the int to format. * @return the formatted String. */ private String printDFormat(int x) { return printDFormat(Integer.toString(x)); } /** * Utility method for formatting using the d * conversion character. * @param sx the String to format, the result of * converting a short, int, or long to a * String. * @return the formatted String. */ private String printDFormat(String sx) { int nLeadingZeros=0; int nBlanks=0,n=0; int i=0,jFirst=0; boolean neg = sx.charAt(0)=='-'; if (sx.equals("0")&&precisionSet&&precision==0) sx=""; if (!neg) { if (precisionSet && sx.length() < precision) nLeadingZeros = precision-sx.length(); } else { if (precisionSet&&(sx.length()-1) precision) nPrint=precision; if (!fieldWidthSet) width = nPrint; int n=0; if (width>nPrint) n+=width-nPrint; if (nPrint>=x.length()) n+= x.length(); else n+= nPrint; char[] ca = new char[n]; int i=0; if (leftJustify) { if (nPrint>=x.length()) { char[] csx = x.toCharArray(); for (i=0; i =x.length()) { char[] csx = x.toCharArray(); for (int j=0; j true if the conversion * character is there, and * false
otherwise. */ private boolean setConversionCharacter() { /* idfgGoxXeEcs */ boolean ret = false; conversionCharacter='\0'; if (pos < fmt.length()) { char c = fmt.charAt(pos); if (c=='i'||c=='d'||c=='f'||c=='g'||c=='G' || c=='o' || c=='x' || c=='X' || c=='e' || c=='E' || c=='c' || c=='s' || c=='%') { conversionCharacter = c; pos++; ret = true; } } return ret; } /** * Check for an h, l, or L in a format. An L is * used to control the minimum number of digits * in an exponent when using floating point * formats. An l or h is used to control * conversion of the input to a long or short, * respectively, before formatting. If any of * these is present, store them. */ private void setOptionalHL() { optionalh=false; optionall=false; optionalL=false; if (pos < fmt.length()) { char c = fmt.charAt(pos); if (c=='h') { optionalh=true; pos++; } else if (c=='l') { optionall=true; pos++; } else if (c=='L') { optionalL=true; pos++; } } } /** * Set the precision. */ private void setPrecision() { int firstPos = pos; precisionSet = false; if (posfirstPos+1) { String sz = fmt.substring(firstPos+1,pos); precision = Integer.parseInt(sz); precisionSet = true; } } } } /** * Set the field width. */ private void setFieldWidth() { int firstPos = pos; fieldWidth = 0; fieldWidthSet = false; if ((pos < fmt.length()) && (fmt.charAt(pos)=='*')) { pos++; if (!setFieldWidthArgPosition()) { variableFieldWidth = true; fieldWidthSet = true; } } else { while (pos < fmt.length()) { char c = fmt.charAt(pos); if (Character.isDigit(c)) pos++; else break; } if (firstPos n in %n$ forms. */ private void setArgPosition() { int xPos; for (xPos=pos; xPos pos && xPos n in *n$ forms. */ private boolean setFieldWidthArgPosition() { boolean ret=false; int xPos; for (xPos=pos; xPos pos && xPos n in *n$ forms. */ private boolean setPrecisionArgPosition() { boolean ret=false; int xPos; for (xPos=pos; xPos pos && xPos