com.netflix.mantis.examples.wordcount.WordCountDslJob Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2019 Netflix, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.netflix.mantis.examples.wordcount;
import com.netflix.mantis.examples.core.WordCountPair;
import com.netflix.mantis.examples.wordcount.sources.IlliadSource;
import io.mantisrx.runtime.Job;
import io.mantisrx.runtime.MantisJobProvider;
import io.mantisrx.runtime.Metadata;
import io.mantisrx.runtime.core.MantisStream;
import io.mantisrx.runtime.core.WindowSpec;
import io.mantisrx.runtime.core.functions.SimpleReduceFunction;
import io.mantisrx.runtime.core.sinks.ObservableSinkImpl;
import io.mantisrx.runtime.core.sources.ObservableSourceImpl;
import io.mantisrx.runtime.executor.LocalJobExecutorNetworked;
import io.mantisrx.runtime.sink.Sinks;
import java.time.Duration;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
import lombok.extern.slf4j.Slf4j;
/**
* This sample demonstrates ingesting data from a text file and counting the number of occurrences of words within a 10
* sec hopping window.
* Run the main method of this class and then look for a the SSE port in the output
* E.g
* Serving modern HTTP SSE server sink on port: 8650
* You can curl this port curl localhost:8650
to view the output of the job.
*
* To run via gradle
* /gradlew :mantis-examples-wordcount:execute
*/
@Slf4j
public class WordCountDslJob extends MantisJobProvider {
@Override
public Job getJobInstance() {
return MantisStream.create(null)
.source(new ObservableSourceImpl<>(new IlliadSource()))
.flatMap(this::tokenize)
.map(x -> {
// this guards against TooLongFrameException for some reason, need to investigate!
try {
Thread.sleep(0, 10000);
} catch (InterruptedException ignored) {
}
return x;
})
.keyBy(WordCountPair::getWord)
.window(WindowSpec.timed(Duration.ofSeconds(10)))
.reduce((SimpleReduceFunction) (acc, item) -> {
if (acc.getWord() != null && !acc.getWord().isEmpty() && !acc.getWord().equals(item.getWord())) {
log.warn("keys dont match: acc ({}) vs item ({})", acc.getWord(), item.getWord());
}
return new WordCountPair(acc.getWord(), acc.getCount() + item.getCount());
})
.map(WordCountPair::toString)
// Reuse built in sink that eagerly subscribes and delivers data over SSE
.sink(new ObservableSinkImpl<>(Sinks.eagerSubscribe(Sinks.sse((String data) -> data))))
.metadata(new Metadata.Builder()
.name("WordCount")
.description("Reads Homer's The Illiad faster than we can.")
.build())
.create();
}
private List tokenize(String text) {
StringTokenizer tokenizer = new StringTokenizer(text);
List wordCountPairs = new ArrayList<>();
while(tokenizer.hasMoreTokens()) {
String word = tokenizer.nextToken().replaceAll("\\s*", "").toLowerCase();
wordCountPairs.add(new WordCountPair(word,1));
}
return wordCountPairs;
}
public static void main(String[] args) {
LocalJobExecutorNetworked.execute(new WordCountDslJob().getJobInstance());
}
}