All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.micrometer.core.instrument.Timer Maven / Gradle / Ivy

There is a newer version: 1.14.2
Show newest version
/**
 * Copyright 2019 Pivotal Software, Inc.
 * 

* Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at *

* https://www.apache.org/licenses/LICENSE-2.0 *

* Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.micrometer.core.instrument; import io.micrometer.core.annotation.Timed; import io.micrometer.core.instrument.distribution.CountAtBucket; import io.micrometer.core.instrument.distribution.DistributionStatisticConfig; import io.micrometer.core.instrument.distribution.HistogramSupport; import io.micrometer.core.instrument.distribution.ValueAtPercentile; import io.micrometer.core.instrument.distribution.pause.PauseDetector; import io.micrometer.core.lang.Nullable; import java.time.Duration; import java.util.Arrays; import java.util.concurrent.Callable; import java.util.concurrent.TimeUnit; import java.util.function.Supplier; /** * Timer intended to track of a large number of short running events. Example would be something like * an HTTP request. Though "short running" is a bit subjective the assumption is that it should be * under a minute. * * @author Jon Schneider * @author Oleksii Bondar */ public interface Timer extends Meter, HistogramSupport { /** * Start a timing sample using the {@link Clock#SYSTEM System clock}. * @return A timing sample with start time recorded. * @since 1.1.0 */ static Sample start() { return start(Clock.SYSTEM); } /** * Start a timing sample. * @param registry a meter registry whose clock is to be used * @return A timing sample with start time recorded. */ static Sample start(MeterRegistry registry) { return start(registry.config().clock()); } /** * Start a timing sample. * @param clock a clock to be used * @return A timing sample with start time recorded. */ static Sample start(Clock clock) { return new Sample(clock); } static Builder builder(String name) { return new Builder(name); } /** * Create a timer builder from a {@link Timed} annotation. * * @param timed The annotation instance to base a new timer on. * @param defaultName A default name to use in the event that the value attribute is empty. * @return This builder. */ static Builder builder(Timed timed, String defaultName) { if (timed.longTask() && timed.value().isEmpty()) { // the user MUST name long task timers, we don't lump them in with regular // timers with the same name throw new IllegalArgumentException("Long tasks instrumented with @Timed require the value attribute to be non-empty"); } return new Builder(timed.value().isEmpty() ? defaultName : timed.value()) .tags(timed.extraTags()) .description(timed.description().isEmpty() ? null : timed.description()) .publishPercentileHistogram(timed.histogram()) .publishPercentiles(timed.percentiles().length > 0 ? timed.percentiles() : null); } /** * Updates the statistics kept by the timer with the specified amount. * * @param amount Duration of a single event being measured by this timer. If the amount is less than 0 * the value will be dropped. * @param unit Time unit for the amount being recorded. */ void record(long amount, TimeUnit unit); /** * Updates the statistics kept by the timer with the specified amount. * * @param duration Duration of a single event being measured by this timer. */ default void record(Duration duration) { record(duration.toNanos(), TimeUnit.NANOSECONDS); } /** * Executes the Supplier {@code f} and records the time taken. * * @param f Function to execute and measure the execution time. * @param The return type of the {@link Supplier}. * @return The return value of {@code f}. */ T record(Supplier f); /** * Executes the callable {@code f} and records the time taken. * * @param f Function to execute and measure the execution time. * @param The return type of the {@link Callable}. * @return The return value of {@code f}. * @throws Exception Any exception bubbling up from the callable. */ T recordCallable(Callable f) throws Exception; /** * Executes the runnable {@code f} and records the time taken. * * @param f Function to execute and measure the execution time. */ void record(Runnable f); /** * Wrap a {@link Runnable} so that it is timed when invoked. * * @param f The Runnable to time when it is invoked. * @return The wrapped Runnable. */ default Runnable wrap(Runnable f) { return () -> record(f); } /** * Wrap a {@link Callable} so that it is timed when invoked. * * @param f The Callable to time when it is invoked. * @param The return type of the callable. * @return The wrapped callable. */ default Callable wrap(Callable f) { return () -> recordCallable(f); } /** * Wrap a {@link Supplier} so that it is timed when invoked. * * @param f The {@code Supplier} to time when it is invoked. * @param The return type of the {@code Supplier} result. * @return The wrapped supplier. * @since 1.2.0 */ default Supplier wrap(Supplier f) { return () -> record(f); } /** * @return The number of times that stop has been called on this timer. */ long count(); /** * @param unit The base unit of time to scale the total to. * @return The total time of recorded events. */ double totalTime(TimeUnit unit); /** * @param unit The base unit of time to scale the mean to. * @return The distribution average for all recorded events. */ default double mean(TimeUnit unit) { return count() == 0 ? 0 : totalTime(unit) / count(); } /** * @param unit The base unit of time to scale the max to. * @return The maximum time of a single event. */ double max(TimeUnit unit); @Override default Iterable measure() { return Arrays.asList( new Measurement(() -> (double) count(), Statistic.COUNT), new Measurement(() -> totalTime(baseTimeUnit()), Statistic.TOTAL_TIME), new Measurement(() -> max(baseTimeUnit()), Statistic.MAX) ); } /** * Provides cumulative histogram counts. * * @param valueNanos The histogram bucket to retrieve a count for. * @return The count of all events less than or equal to the bucket. If valueNanos does not * match a preconfigured bucket boundary, returns NaN. * @deprecated Use {@link #takeSnapshot()} to retrieve bucket counts. */ @Deprecated default double histogramCountAtValue(long valueNanos) { for (CountAtBucket countAtBucket : takeSnapshot().histogramCounts()) { if ((long) countAtBucket.bucket(TimeUnit.NANOSECONDS) == valueNanos) { return countAtBucket.count(); } } return Double.NaN; } /** * @param percentile A percentile in the domain [0, 1]. For example, 0.5 represents the 50th percentile of the * distribution. * @param unit The base unit of time to scale the percentile value to. * @return The latency at a specific percentile. This value is non-aggregable across dimensions. Returns NaN if * percentile is not a preconfigured percentile that Micrometer is tracking. * @deprecated Use {@link #takeSnapshot()} to retrieve bucket counts. */ @Deprecated default double percentile(double percentile, TimeUnit unit) { for (ValueAtPercentile valueAtPercentile : takeSnapshot().percentileValues()) { if (valueAtPercentile.percentile() == percentile) { return valueAtPercentile.value(unit); } } return Double.NaN; } /** * @return The base time unit of the timer to which all published metrics will be scaled */ TimeUnit baseTimeUnit(); /** * Maintains state on the clock's start position for a latency sample. Complete the timing * by calling {@link Sample#stop(Timer)}. Note how the {@link Timer} isn't provided until the * sample is stopped, allowing you to determine the timer's tags at the last minute. */ class Sample { private final long startTime; private final Clock clock; Sample(Clock clock) { this.clock = clock; this.startTime = clock.monotonicTime(); } /** * Records the duration of the operation * * @param timer The timer to record the sample to. * @return The total duration of the sample in nanoseconds */ public long stop(Timer timer) { long durationNs = clock.monotonicTime() - startTime; timer.record(durationNs, TimeUnit.NANOSECONDS); return durationNs; } } /** * Fluent builder for timers. */ class Builder { private final String name; private Tags tags = Tags.empty(); private final DistributionStatisticConfig.Builder distributionConfigBuilder; @Nullable private String description; @Nullable private PauseDetector pauseDetector; private Builder(String name) { this.name = name; this.distributionConfigBuilder = new DistributionStatisticConfig.Builder(); minimumExpectedValue(Duration.ofMillis(1)); maximumExpectedValue(Duration.ofSeconds(30)); } /** * @param tags Must be an even number of arguments representing key/value pairs of tags. * @return This builder. */ public Builder tags(String... tags) { return tags(Tags.of(tags)); } /** * @param tags Tags to add to the eventual timer. * @return The timer builder with added tags. */ public Builder tags(Iterable tags) { this.tags = this.tags.and(tags); return this; } /** * @param key The tag key. * @param value The tag value. * @return The timer builder with a single added tag. */ public Builder tag(String key, String value) { this.tags = tags.and(key, value); return this; } /** * Produces an additional time series for each requested percentile. This percentile * is computed locally, and so can't be aggregated with percentiles computed across other * dimensions (e.g. in a different instance). Use {@link #publishPercentileHistogram()} * to publish a histogram that can be used to generate aggregable percentile approximations. * * @param percentiles Percentiles to compute and publish. The 95th percentile should be expressed as {@code 0.95}. * @return This builder. */ public Builder publishPercentiles(@Nullable double... percentiles) { this.distributionConfigBuilder.percentiles(percentiles); return this; } /** * Determines the number of digits of precision to maintain on the dynamic range histogram used to compute * percentile approximations. The higher the degrees of precision, the more accurate the approximation is at the * cost of more memory. * * @param digitsOfPrecision The digits of precision to maintain for percentile approximations. * @return This builder. */ public Builder percentilePrecision(@Nullable Integer digitsOfPrecision) { this.distributionConfigBuilder.percentilePrecision(digitsOfPrecision); return this; } /** * Adds histogram buckets used to generate aggregable percentile approximations in monitoring * systems that have query facilities to do so (e.g. Prometheus' {@code histogram_quantile}, * Atlas' {@code :percentiles}). * * @return This builder. */ public Builder publishPercentileHistogram() { return publishPercentileHistogram(true); } /** * Adds histogram buckets used to generate aggregable percentile approximations in monitoring * systems that have query facilities to do so (e.g. Prometheus' {@code histogram_quantile}, * Atlas' {@code :percentiles}). * * @param enabled Determines whether percentile histograms should be published. * @return This builder. */ public Builder publishPercentileHistogram(@Nullable Boolean enabled) { this.distributionConfigBuilder.percentilesHistogram(enabled); return this; } /** * Publish at a minimum a histogram containing your defined SLA boundaries. When used in conjunction with * {@link Builder#publishPercentileHistogram()}, the boundaries defined here are included alongside * other buckets used to generate aggregable percentile approximations. * * @param sla Publish SLA boundaries in the set of histogram buckets shipped to the monitoring system. * @return This builder. */ public Builder sla(@Nullable Duration... sla) { if (sla != null) { long[] slaNano = new long[sla.length]; for (int i = 0; i < slaNano.length; i++) { slaNano[i] = sla[i].toNanos(); } this.distributionConfigBuilder.sla(slaNano); } return this; } /** * Sets the minimum value that this timer is expected to observe. Sets a lower bound * on histogram buckets that are shipped to monitoring systems that support aggregable percentile approximations. * * @param min The minimum value that this timer is expected to observe. * @return This builder. */ public Builder minimumExpectedValue(@Nullable Duration min) { if (min != null) this.distributionConfigBuilder.minimumExpectedValue(min.toNanos()); return this; } /** * Sets the maximum value that this timer is expected to observe. Sets an upper bound * on histogram buckets that are shipped to monitoring systems that support aggregable percentile approximations. * * @param max The maximum value that this timer is expected to observe. * @return This builder. */ public Builder maximumExpectedValue(@Nullable Duration max) { if (max != null) this.distributionConfigBuilder.maximumExpectedValue(max.toNanos()); return this; } /** * Statistics emanating from a timer like max, percentiles, and histogram counts decay over time to * give greater weight to recent samples (exception: histogram counts are cumulative for those systems that expect cumulative * histogram buckets). Samples are accumulated to such statistics in ring buffers which rotate after * this expiry, with a buffer length of {@link #distributionStatisticBufferLength(Integer)}. * * @param expiry The amount of time samples are accumulated to a histogram before it is reset and rotated. * @return This builder. */ public Builder distributionStatisticExpiry(@Nullable Duration expiry) { this.distributionConfigBuilder.expiry(expiry); return this; } /** * Statistics emanating from a timer like max, percentiles, and histogram counts decay over time to * give greater weight to recent samples (exception: histogram counts are cumulative for those systems that expect cumulative * histogram buckets). Samples are accumulated to such statistics in ring buffers which rotate after * {@link #distributionStatisticExpiry(Duration)}, with this buffer length. * * @param bufferLength The number of histograms to keep in the ring buffer. * @return This builder. */ public Builder distributionStatisticBufferLength(@Nullable Integer bufferLength) { this.distributionConfigBuilder.bufferLength(bufferLength); return this; } /** * Sets the pause detector implementation to use for this timer. Can also be configured on a registry-level with * {@link MeterRegistry.Config#pauseDetector(PauseDetector)}. * * @param pauseDetector The pause detector implementation to use. * @return This builder. * @see io.micrometer.core.instrument.distribution.pause.NoPauseDetector * @see io.micrometer.core.instrument.distribution.pause.ClockDriftPauseDetector */ public Builder pauseDetector(@Nullable PauseDetector pauseDetector) { this.pauseDetector = pauseDetector; return this; } /** * @param description Description text of the eventual timer. * @return This builder. */ public Builder description(@Nullable String description) { this.description = description; return this; } /** * Add the timer to a single registry, or return an existing timer in that registry. The returned * timer will be unique for each registry, but each registry is guaranteed to only create one timer * for the same combination of name and tags. * * @param registry A registry to add the timer to, if it doesn't already exist. * @return A new or existing timer. */ public Timer register(MeterRegistry registry) { // the base unit for a timer will be determined by the monitoring system implementation return registry.timer(new Meter.Id(name, tags, null, description, Type.TIMER), distributionConfigBuilder.build(), pauseDetector == null ? registry.config().pauseDetector() : pauseDetector); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy