io.micrometer.core.tck.MeterRegistryCompatibilityKit Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of micrometer-test Show documentation
Show all versions of micrometer-test Show documentation
Test compatibility kit for extensions of Micrometer
/*
* Copyright 2017 VMware, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.micrometer.core.tck;
import io.micrometer.core.Issue;
import io.micrometer.core.annotation.Timed;
import io.micrometer.core.instrument.Timer;
import io.micrometer.core.instrument.*;
import io.micrometer.core.instrument.distribution.CountAtBucket;
import io.micrometer.core.instrument.distribution.DistributionStatisticConfig;
import io.micrometer.core.instrument.distribution.HistogramSnapshot;
import io.micrometer.core.instrument.distribution.ValueAtPercentile;
import io.micrometer.core.instrument.internal.CumulativeHistogramLongTaskTimer;
import io.micrometer.core.instrument.observation.DefaultMeterObservationHandler;
import io.micrometer.core.instrument.util.TimeUtils;
import io.micrometer.observation.Observation;
import io.micrometer.observation.ObservationRegistry;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.DisplayName;
import org.junit.jupiter.api.Nested;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.CsvSource;
import java.time.Duration;
import java.util.*;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.function.Supplier;
import static io.micrometer.core.instrument.MockClock.clock;
import static io.micrometer.core.instrument.Statistic.ACTIVE_TASKS;
import static io.micrometer.core.instrument.Statistic.DURATION;
import static io.micrometer.core.instrument.util.TimeUtils.millisToUnit;
import static java.util.Collections.emptyList;
import static java.util.Objects.requireNonNull;
import static org.assertj.core.api.Assertions.*;
import static org.assertj.core.api.SoftAssertions.assertSoftly;
/**
* Base class for {@link MeterRegistry} compatibility tests. To run a
* {@link MeterRegistry} implementation against this TCK, make a test class that extends
* this and implement the abstract methods.
*
* @author Jon Schneider
* @author Johnny Lim
* @author Jonatan Ivanov
*/
public abstract class MeterRegistryCompatibilityKit {
// Retain this as a member field to prevent it to be garbage-collected in OpenJ9.
private final Object o = new Object();
protected MeterRegistry registry;
protected ObservationRegistry observationRegistry = ObservationRegistry.create();
public abstract MeterRegistry registry();
public abstract Duration step();
@BeforeEach
void setup() {
// assigned here rather than at initialization so subclasses can use fields in
// their registry() implementation
registry = registry();
observationRegistry.observationConfig().observationHandler(new DefaultMeterObservationHandler(registry));
}
@Test
@DisplayName("compatibility test provides a non-null registry instance")
void registryIsNotNull() {
assertThat(registry).isNotNull();
}
@Test
@DisplayName("meters with the same name and tags are registered once")
void uniqueMeters() {
registry.counter("foo");
registry.counter("foo");
assertThat(registry.get("foo").meters().size()).isEqualTo(1);
}
@Test
@DisplayName("find meters by name and class type matching a subset of their tags")
void findMeters() {
Counter c1 = registry.counter("foo", "k", "v");
Counter c2 = registry.counter("bar", "k", "v", "k2", "v");
assertThat(registry.get("foo").tags("k", "v").counter()).isSameAs(c1);
assertThat(registry.get("bar").tags("k", "v").counter()).isSameAs(c2);
}
@Test
@DisplayName("find meters by name and type matching a subset of their tags")
void findMetersByType() {
Counter c1 = registry.counter("foo", "k", "v");
Counter c2 = registry.counter("bar", "k", "v", "k2", "v");
assertThat(registry.get("foo").tags("k", "v").counter()).isSameAs(c1);
assertThat(registry.get("bar").tags("k", "v").counter()).isSameAs(c2);
}
@Test
@DisplayName("find meters by name and value")
void findMetersByValue() {
Counter c = registry.counter("counter");
c.increment();
Timer t = registry.timer("timer");
t.record(10, TimeUnit.NANOSECONDS);
clock(registry).add(step());
assertThat(registry.get("counter").counter().count()).isEqualTo(1.0);
assertThat(registry.get("timer").timer().count()).isEqualTo(1L);
assertThat(registry.get("timer").timer().totalTime(TimeUnit.NANOSECONDS)).isEqualTo(10.0);
}
@Test
@DisplayName("common tags are added to every measurement")
void addCommonTags() {
registry.config().commonTags("k", "v");
Counter c = registry.counter("foo");
assertThat(registry.get("foo").tags("k", "v").counter()).isSameAs(c);
assertThat(c.getId().getTagsAsIterable()).hasSize(1);
}
@Test
@DisplayName("original and convention names are preserved for custom meter types")
void aTaleOfTwoNames() {
AtomicInteger n = new AtomicInteger(1);
registry.more().counter("my.counter", Collections.emptyList(), n);
registry.get("my.counter").functionCounter();
}
@Test
@DisplayName("function timers respect the base unit of an underlying registry")
void functionTimerUnits() {
registry.more().timer("function.timer", emptyList(), this.o, o2 -> 1, o2 -> 1, TimeUnit.MILLISECONDS);
FunctionTimer ft = registry.get("function.timer").functionTimer();
clock(registry).add(step());
assertThat(ft.measure()).anySatisfy(ms -> {
TimeUnit baseUnit = TimeUnit.valueOf(requireNonNull(ft.getId().getBaseUnit()).toUpperCase());
assertThat(ms.getStatistic()).isEqualTo(Statistic.TOTAL_TIME);
assertThat(TimeUtils.convert(ms.getValue(), baseUnit, TimeUnit.MILLISECONDS)).isEqualTo(1);
});
}
@Test
@DisplayName("meters with synthetics can be removed without causing deadlocks")
void removeMeterWithSynthetic() {
Timer timer = Timer.builder("my.timer")
.publishPercentiles(0.95)
.serviceLevelObjectives(Duration.ofMillis(10))
.register(registry);
registry.remove(timer);
}
@DisplayName("counters")
@Nested
class CounterTck {
@DisplayName("multiple increments are maintained")
@Test
void increment() {
Counter c = registry.counter("myCounter");
c.increment();
clock(registry).add(step());
assertThat(c.count()).isCloseTo(1.0, offset(1e-12));
c.increment();
c.increment();
clock(registry).add(step());
// in the case of a step aggregating system will be 2, otherwise 3
assertThat(c.count()).isGreaterThanOrEqualTo(2.0);
}
@Test
@DisplayName("increment by a non-negative amount")
void incrementAmount() {
Counter c = registry.counter("myCounter");
c.increment(2);
c.increment(0);
clock(registry).add(step());
assertThat(c.count()).isEqualTo(2L);
}
@Test
@DisplayName("function-tracking counter increments by change in a monotonically increasing function when observed")
void functionTrackingCounter() {
AtomicLong n = new AtomicLong();
registry.more().counter("tracking", emptyList(), n);
n.incrementAndGet();
clock(registry).add(step());
registry.forEachMeter(Meter::measure);
assertThat(registry.get("tracking").functionCounter().count()).isEqualTo(1.0);
}
}
@DisplayName("distribution summaries")
@Nested
class DistributionSummaryTck {
@Test
@DisplayName("multiple recordings are maintained")
void record() {
DistributionSummary ds = registry.summary("my.summary");
ds.record(10);
clock(registry).add(step());
ds.count();
assertSoftly(softly -> {
softly.assertThat(ds.count()).isEqualTo(1L);
softly.assertThat(ds.totalAmount()).isEqualTo(10L);
});
ds.record(10);
ds.record(10);
clock(registry).add(step());
assertSoftly(softly -> {
softly.assertThat(ds.count()).isGreaterThanOrEqualTo(2L);
softly.assertThat(ds.totalAmount()).isGreaterThanOrEqualTo(20L);
});
}
@Test
@DisplayName("negative quantities are ignored")
void recordNegative() {
DistributionSummary ds = registry.summary("my.summary");
ds.record(-10);
assertSoftly(softly -> {
softly.assertThat(ds.count()).isEqualTo(0L);
softly.assertThat(ds.totalAmount()).isEqualTo(0L);
});
}
@Test
@DisplayName("record zero")
void recordZero() {
DistributionSummary ds = registry.summary("my.summary");
ds.record(0);
clock(registry).add(step());
assertSoftly(softly -> {
softly.assertThat(ds.count()).isEqualTo(1L);
softly.assertThat(ds.totalAmount()).isEqualTo(0L);
});
}
@Test
@DisplayName("scale samples by a fixed factor")
void scale() {
DistributionSummary ds = DistributionSummary.builder("my.summary").scale(2.0).register(registry);
ds.record(1);
clock(registry).add(step());
assertThat(ds.totalAmount()).isEqualTo(2.0);
}
@SuppressWarnings("deprecation")
@Test
void percentiles() {
DistributionSummary s = DistributionSummary.builder("my.summary").publishPercentiles(1).register(registry);
s.record(1);
assertThat(s.percentile(1)).isCloseTo(1, offset(0.3));
assertThat(s.percentile(0.5)).isNaN();
}
@SuppressWarnings("deprecation")
@Test
void histogramCounts() {
DistributionSummary s = DistributionSummary.builder("my.summmary")
.serviceLevelObjectives(1.0)
.register(registry);
// ensure time-window based histograms are not fully rotated when we assert
Duration halfStep = step().dividedBy(2);
clock(registry).add(halfStep);
s.record(1);
// accommodate StepBucketHistogram
clock(registry).add(halfStep);
assertThat(s.histogramCountAtValue(1)).isEqualTo(1);
assertThat(s.histogramCountAtValue(2)).isNaN();
}
@Issue("#3904")
@Test
void histogramCountsPublishPercentileHistogramAndSlos() {
DistributionSummary summary = DistributionSummary.builder("my.summmary")
.serviceLevelObjectives(5, 50, 95)
.publishPercentileHistogram()
.register(registry);
// ensure time-window based histograms are not fully rotated when we assert
Duration halfStep = step().dividedBy(2);
clock(registry).add(halfStep);
for (int val : new int[] { 22, 55, 66, 98 }) {
summary.record(val);
}
// accommodate StepBucketHistogram
clock(registry).add(halfStep);
HistogramSnapshot snapshot = summary.takeSnapshot();
CountAtBucket[] countAtBuckets = snapshot.histogramCounts();
assertHistogramBuckets(countAtBuckets);
}
}
private void assertHistogramBuckets(CountAtBucket[] countAtBuckets) {
assertHistogramBuckets(countAtBuckets, null);
}
private void assertHistogramBuckets(CountAtBucket[] countAtBuckets, TimeUnit timeUnit) {
// percentile histogram buckets may be there, assert SLO buckets are present
assertThat(countAtBuckets).extracting(c -> getCount(c, timeUnit)).contains(5.0, 50.0, 95.0);
assertThat(countAtBuckets).satisfiesAnyOf(
// we can directly check the count of cumulative SLO buckets
bucketCounts -> assertThat(Arrays.stream(bucketCounts)
.filter(countAtBucket -> Arrays.asList(5.0, 50.0, 95.0)
.contains(getCount(countAtBucket, timeUnit))))
.extracting(CountAtBucket::count)
.containsExactly(0.0, 1.0, 3.0),
// if not cumulative buckets, we need to add up buckets in range.
bucketCounts -> {
assertThat(nonCumulativeBucketCountForRange(bucketCounts, timeUnit, 0, 5)).isEqualTo(0);
assertThat(nonCumulativeBucketCountForRange(bucketCounts, timeUnit, 5, 50)).isEqualTo(1);
assertThat(nonCumulativeBucketCountForRange(bucketCounts, timeUnit, 50, 95)).isEqualTo(2);
});
}
private double getCount(CountAtBucket countAtBucket, TimeUnit timeUnit) {
return timeUnit != null ? countAtBucket.bucket(timeUnit) : countAtBucket.bucket();
}
private double nonCumulativeBucketCountForRange(CountAtBucket[] countAtBuckets, TimeUnit timeUnit,
double exclusiveMinBucket, double inclusiveMaxBucket) {
double count = 0;
for (CountAtBucket countAtBucket : countAtBuckets) {
double c = getCount(countAtBucket, timeUnit);
if (c > exclusiveMinBucket && c <= inclusiveMaxBucket) {
count += countAtBucket.count();
}
}
return count;
}
@DisplayName("gauges")
@Nested
class GaugeTck {
@Test
@DisplayName("gauges attached to a number are updated when their values are observed")
void numericGauge() {
AtomicInteger n = registry.gauge("my.gauge", new AtomicInteger());
n.set(1);
Gauge g = registry.get("my.gauge").gauge();
assertThat(g.value()).isEqualTo(1);
n.set(2);
assertThat(g.value()).isEqualTo(2);
}
@Test
@DisplayName("gauges attached to an object are updated when their values are observed")
void objectGauge() {
List list = registry.gauge("my.gauge", emptyList(), new ArrayList<>(), List::size);
list.addAll(Arrays.asList("a", "b"));
Gauge g = registry.get("my.gauge").gauge();
assertThat(g.value()).isEqualTo(2);
}
@Test
@DisplayName("gauges can be directly associated with collection size")
void collectionSizeGauge() {
List list = registry.gaugeCollectionSize("my.gauge", emptyList(), new ArrayList<>());
list.addAll(Arrays.asList("a", "b"));
Gauge g = registry.get("my.gauge").gauge();
assertThat(g.value()).isEqualTo(2);
}
@Test
@DisplayName("gauges can be directly associated with map entry size")
void mapSizeGauge() {
Map map = registry.gaugeMapSize("my.gauge", emptyList(), new HashMap<>());
map.put("a", 1);
Gauge g = registry.get("my.gauge").gauge();
assertThat(g.value()).isEqualTo(1);
}
@Test
@DisplayName("gauges that reference an object that is garbage collected report NaN")
void garbageCollectedSourceObject() {
registry.gauge("my.gauge", emptyList(), (Map) null, Map::size);
assertThat(registry.get("my.gauge").gauge().value())
.matches(val -> val == null || Double.isNaN(val) || val == 0.0);
}
@Test
@DisplayName("strong reference gauges")
void strongReferenceGauges() {
Gauge.builder("weak.ref", 1.0, n -> n).register(registry);
Gauge.builder("strong.ref", 1.0, n -> n).strongReference(true).register(registry);
System.gc();
assertThat(registry.get("weak.ref").gauge().value()).isNaN();
assertThat(registry.get("strong.ref").gauge().value()).isEqualTo(1.0);
}
}
@DisplayName("long task timers")
@Nested
class LongTaskTimerTck {
@Test
@DisplayName("total time is preserved for a single timing")
void record() {
LongTaskTimer t = registry.more().longTaskTimer("my.timer");
LongTaskTimer.Sample sample = t.start();
clock(registry).add(10, TimeUnit.NANOSECONDS);
assertSoftly(softly -> {
softly.assertThat(t.duration(TimeUnit.NANOSECONDS)).isEqualTo(10);
softly.assertThat(t.duration(TimeUnit.MICROSECONDS)).isEqualTo(0.01);
softly.assertThat(sample.duration(TimeUnit.NANOSECONDS)).isEqualTo(10);
softly.assertThat(sample.duration(TimeUnit.MICROSECONDS)).isEqualTo(0.01);
softly.assertThat(t.activeTasks()).isEqualTo(1);
});
assertThat(t.measure()).satisfiesExactlyInAnyOrder(measurement -> assertThat(measurement).satisfies(m -> {
assertThat(m.getValue()).isEqualTo(1.0);
assertThat(m.getStatistic()).isSameAs(ACTIVE_TASKS);
}), measurement -> assertThat(measurement).satisfies(m -> {
assertThat(m.getValue()).isEqualTo(TimeUtils.convert(10, TimeUnit.NANOSECONDS, t.baseTimeUnit()));
assertThat(m.getStatistic()).isSameAs(DURATION);
}));
clock(registry).add(10, TimeUnit.NANOSECONDS);
sample.stop();
assertSoftly(softly -> {
softly.assertThat(t.duration(TimeUnit.NANOSECONDS)).isEqualTo(0);
softly.assertThat(sample.duration(TimeUnit.NANOSECONDS)).isEqualTo(-1);
softly.assertThat(t.activeTasks()).isEqualTo(0);
});
}
@Test
@DisplayName("supports sending the Nth percentile active task duration")
void percentiles() {
double[] rawPercentiles = new double[] { 0.5, 0.7, 0.91, 0.999, 1 };
LongTaskTimer t = LongTaskTimer.builder("my.timer").publishPercentiles(rawPercentiles).register(registry);
// Using the example of percentile interpolation from
// https://statisticsbyjim.com/basics/percentiles/
List samples = Arrays.asList(48, 42, 40, 35, 22, 16, 13, 8, 6, 4, 2);
int prior = samples.get(0);
for (Integer value : samples) {
clock(registry).add(prior - value, TimeUnit.SECONDS);
t.start();
prior = value;
}
clock(registry).add(samples.get(samples.size() - 1), TimeUnit.SECONDS);
assertThat(t.activeTasks()).isEqualTo(11);
ValueAtPercentile[] percentiles = t.takeSnapshot().percentileValues();
int percentilesChecked = 0;
for (ValueAtPercentile percentile : percentiles) {
if (percentile.percentile() == 0.5) {
assertThat(percentile.value(TimeUnit.SECONDS)).isEqualTo(16);
percentilesChecked++;
}
else if (percentile.percentile() == 0.7) {
assertThat(percentile.value(TimeUnit.SECONDS)).isEqualTo(37, within(0.001));
percentilesChecked++;
}
else if (percentile.percentile() == 0.91) {
// a value close-to the highest value that is available for
// interpolation (11
// / 12)
assertThat(percentile.value(TimeUnit.SECONDS)).isEqualTo(47.5, within(0.1));
percentilesChecked++;
}
else if (percentile.percentile() == 0.999) {
assertThat(percentile.value(TimeUnit.SECONDS)).isEqualTo(48, within(0.1));
percentilesChecked++;
}
else if (percentile.percentile() == 1) {
assertThat(percentile.value(TimeUnit.SECONDS)).isEqualTo(48);
percentilesChecked++;
}
}
// ensure all percentiles specified have been checked.
assertThat(percentilesChecked).isEqualTo(rawPercentiles.length);
}
@Test
@DisplayName("supports sending histograms of active task duration")
void histogram() {
LongTaskTimer t = LongTaskTimer.builder("my.timer")
.serviceLevelObjectives(Duration.ofSeconds(10), Duration.ofSeconds(40), Duration.ofMinutes(1))
.register(registry);
List samples = Arrays.asList(48, 42, 40, 35, 22, 16, 13, 8, 6, 4, 2);
int prior = samples.get(0);
for (Integer value : samples) {
clock(registry).add(prior - value, TimeUnit.SECONDS);
t.start();
prior = value;
}
clock(registry).add(samples.get(samples.size() - 1), TimeUnit.SECONDS);
CountAtBucket[] countAtBuckets = t.takeSnapshot().histogramCounts();
assertThat(countAtBuckets[0].bucket(TimeUnit.SECONDS)).isEqualTo(10);
assertThat(countAtBuckets[0].count()).isEqualTo(4);
assertThat(countAtBuckets[1].bucket(TimeUnit.SECONDS)).isEqualTo(40);
assertThat(countAtBuckets[1].count()).isEqualTo(9);
assertThat(countAtBuckets[2].bucket(TimeUnit.MINUTES)).isEqualTo(1);
assertThat(countAtBuckets[2].count()).isEqualTo(11);
}
@Test
@DisplayName("attributes from @Timed annotation apply to builder")
void timedAnnotation() {
Timed timed = AnnotationHolder.class.getAnnotation(Timed.class);
LongTaskTimer ltt = LongTaskTimer.builder(timed).register(registry);
Meter.Id id = ltt.getId();
assertThat(id.getName()).isEqualTo("my.name");
assertThat(id.getTags()).containsExactly(Tag.of("a", "tag"));
assertThat(id.getDescription()).isEqualTo("some description");
if (ltt instanceof CumulativeHistogramLongTaskTimer) {
assertThat(ltt.takeSnapshot().histogramCounts()).isNotEmpty();
}
}
@Timed(value = "my.name", longTask = true, extraTags = { "a", "tag" }, description = "some description",
histogram = true)
class AnnotationHolder {
}
}
@DisplayName("timers")
@Nested
class TimerTck {
@DisplayName("autocloseable sample")
@ParameterizedTest(name = "when outcome is \"{0}\"")
@CsvSource({ "success", "error" })
@Issue("#1425")
void closeable(String outcome) {
try (Timer.ResourceSample sample = Timer.resource(registry, "requests")
.description("This is an operation")
.publishPercentileHistogram()) {
try {
if (outcome.equals("error")) {
throw new IllegalArgumentException("boom");
}
sample.tag("outcome", "success");
}
catch (Throwable t) {
sample.tag("outcome", "error");
}
}
clock(registry).add(step());
assertThat(registry.get("requests").tag("outcome", outcome).timer().count()).isEqualTo(1);
}
@DisplayName("record callable")
@Test
void recordCallable() throws Exception {
registry.timer("timer").recordCallable(() -> "");
}
@Test
@DisplayName("total time and count are preserved for a single timing")
void record() {
Timer t = registry.timer("myTimer");
t.record(42, TimeUnit.MILLISECONDS);
clock(registry).add(step());
assertSoftly(softly -> {
softly.assertThat(t.count()).isEqualTo(1L);
softly.assertThat(t.totalTime(TimeUnit.MILLISECONDS)).isCloseTo(42, offset(1.0e-12));
});
}
@Test
@DisplayName("record durations")
void recordDuration() {
Timer t = registry.timer("myTimer");
t.record(Duration.ofMillis(42));
clock(registry).add(step());
assertSoftly(softly -> {
softly.assertThat(t.count()).isEqualTo(1L);
softly.assertThat(t.totalTime(TimeUnit.MILLISECONDS)).isCloseTo(42, offset(1.0e-12));
});
}
@Test
@DisplayName("negative times are discarded by the Timer")
void recordNegative() {
Timer t = registry.timer("myTimer");
t.record(-42, TimeUnit.MILLISECONDS);
assertSoftly(softly -> {
softly.assertThat(t.count()).isEqualTo(0L);
softly.assertThat(t.totalTime(TimeUnit.NANOSECONDS)).isCloseTo(0, offset(1.0e-12));
});
}
@Test
@DisplayName("zero times contribute to the count of overall events but do not add to total time")
void recordZero() {
Timer t = registry.timer("myTimer");
t.record(0, TimeUnit.MILLISECONDS);
clock(registry).add(step());
assertSoftly(softly -> {
softly.assertThat(t.count()).isEqualTo(1L);
softly.assertThat(t.totalTime(TimeUnit.NANOSECONDS)).isEqualTo(0d);
});
}
@Test
@DisplayName("record a runnable task")
void recordWithRunnable() {
Timer t = registry.timer("myTimer");
Runnable r = () -> {
clock(registry).add(10, TimeUnit.NANOSECONDS);
};
try {
t.record(r);
clock(registry).add(step());
}
finally {
assertSoftly(softly -> {
softly.assertThat(t.count()).isEqualTo(1L);
softly.assertThat(t.totalTime(TimeUnit.NANOSECONDS)).isCloseTo(10, offset(1.0e-12));
});
}
}
@Test
@DisplayName("record supplier")
void recordWithSupplier() {
Timer t = registry.timer("myTimer");
String expectedResult = "response";
Supplier supplier = () -> {
clock(registry).add(10, TimeUnit.NANOSECONDS);
return expectedResult;
};
try {
String supplierResult = t.record(supplier);
assertThat(supplierResult).isEqualTo(expectedResult);
clock(registry).add(step());
}
finally {
assertSoftly(softly -> {
softly.assertThat(t.count()).isEqualTo(1L);
softly.assertThat(t.totalTime(TimeUnit.NANOSECONDS)).isCloseTo(10, offset(1.0e-12));
});
}
}
@Test
@DisplayName("wrap supplier")
void wrapSupplier() {
Timer timer = registry.timer("myTimer");
String expectedResult = "response";
Supplier supplier = () -> {
clock(registry).add(10, TimeUnit.NANOSECONDS);
return expectedResult;
};
try {
Supplier wrappedSupplier = timer.wrap(supplier);
assertThat(wrappedSupplier.get()).isEqualTo(expectedResult);
clock(registry).add(step());
}
finally {
assertSoftly(softly -> {
softly.assertThat(timer.count()).isEqualTo(1L);
softly.assertThat(timer.totalTime(TimeUnit.NANOSECONDS)).isCloseTo(10, offset(1.0e-12));
});
}
}
@Test
@DisplayName("record with stateful Sample instance")
void recordWithSample() {
Timer timer = registry.timer("myTimer");
Timer.Sample sample = Timer.start(registry);
clock(registry).add(10, TimeUnit.NANOSECONDS);
sample.stop(timer);
clock(registry).add(step());
assertSoftly(softly -> {
softly.assertThat(timer.count()).isEqualTo(1L);
softly.assertThat(timer.totalTime(TimeUnit.NANOSECONDS)).isCloseTo(10, offset(1.0e-12));
});
}
@Test
@DisplayName("record with stateful Observation instance")
void recordWithObservation() {
Observation observation = Observation.createNotStarted("myObservation", observationRegistry)
.lowCardinalityKeyValue("staticTag", "42")
.start();
// created after start, LongTaskTimer won't have it
observation.lowCardinalityKeyValue("dynamicTag", "24");
clock(registry).add(1, TimeUnit.SECONDS);
observation.event(Observation.Event.of("testEvent", "event for testing"));
LongTaskTimer longTaskTimer = registry.more().longTaskTimer("myObservation.active", "staticTag", "42");
assertThat(longTaskTimer.activeTasks()).isEqualTo(1);
observation.stop();
clock(registry).add(step());
assertThat(longTaskTimer.activeTasks()).isEqualTo(0);
Timer timer = registry.timer("myObservation", "error", "none", "staticTag", "42", "dynamicTag", "24");
assertSoftly(softly -> {
softly.assertThat(timer.count()).isEqualTo(1L);
softly.assertThat(timer.totalTime(TimeUnit.SECONDS)).isCloseTo(1, offset(1.0e-12));
});
Counter counter = registry.counter("myObservation.testEvent", "staticTag", "42", "dynamicTag", "24");
assertThat(counter.count()).isEqualTo(1.0);
}
@Test
@DisplayName("record with stateful Observation and Scope instances")
void recordWithObservationAndScope() {
Observation observation = Observation.start("myObservation", observationRegistry);
try (Observation.Scope scope = observation.openScope()) {
assertThat(scope.getCurrentObservation()).isSameAs(observation);
clock(registry).add(10, TimeUnit.NANOSECONDS);
observation.event(Observation.Event.of("testEvent", "event for testing"));
}
observation.stop();
clock(registry).add(step());
Timer timer = registry.timer("myObservation", "error", "none");
assertSoftly(softly -> {
softly.assertThat(timer.count()).isEqualTo(1L);
softly.assertThat(timer.totalTime(TimeUnit.NANOSECONDS)).isCloseTo(10, offset(1.0e-12));
});
Counter counter = registry.counter("myObservation.testEvent");
assertThat(counter.count()).isEqualTo(1.0);
}
@Test
void recordMax() {
Timer timer = registry.timer("my.timer");
timer.record(10, TimeUnit.MILLISECONDS);
timer.record(1, TimeUnit.SECONDS);
clock(registry).add(step()); // for Atlas, which is step rather than
// ring-buffer based
assertThat(timer.max(TimeUnit.SECONDS)).isEqualTo(1);
assertThat(timer.max(TimeUnit.MILLISECONDS)).isEqualTo(1000);
// noinspection ConstantConditions
clock(registry)
.add(Duration.ofMillis(step().toMillis() * DistributionStatisticConfig.DEFAULT.getBufferLength()));
assertThat(timer.max(TimeUnit.SECONDS)).isEqualTo(0);
}
@Test
@DisplayName("callable task that throws exception is still recorded")
void recordCallableException() {
Timer t = registry.timer("myTimer");
assertThatException().isThrownBy(() -> {
t.recordCallable(() -> {
clock(registry).add(10, TimeUnit.NANOSECONDS);
throw new Exception("uh oh");
});
});
clock(registry).add(step());
assertSoftly(softly -> {
softly.assertThat(t.count()).isEqualTo(1L);
softly.assertThat(t.totalTime(TimeUnit.NANOSECONDS)).isCloseTo(10, offset(1.0e-12));
});
}
@SuppressWarnings("deprecation")
@Test
void percentiles() {
Timer t = Timer.builder("my.timer").publishPercentiles(1).register(registry);
t.record(1, TimeUnit.MILLISECONDS);
assertThat(t.percentile(1, TimeUnit.MILLISECONDS)).isCloseTo(1, offset(0.3));
assertThat(t.percentile(0.5, TimeUnit.MILLISECONDS)).isNaN();
}
@SuppressWarnings("deprecation")
@Test
void histogramCounts() {
Timer t = Timer.builder("my.timer").serviceLevelObjectives(Duration.ofMillis(1)).register(registry);
// ensure time-window based histograms are not fully rotated when we assert
Duration halfStep = step().dividedBy(2);
clock(registry).add(halfStep);
t.record(1, TimeUnit.MILLISECONDS);
// accommodate StepBucketHistogram
clock(registry).add(halfStep);
assertThat(t.histogramCountAtValue((long) millisToUnit(1, TimeUnit.NANOSECONDS))).isEqualTo(1);
assertThat(t.histogramCountAtValue(1)).isNaN();
}
@Issue("#3904")
@Test
void histogramCountsPublishPercentileHistogramAndSlos() {
Timer timer = Timer.builder("my.timer")
.serviceLevelObjectives(Duration.ofMillis(5), Duration.ofMillis(50), Duration.ofMillis(95))
.publishPercentileHistogram()
.register(registry);
// ensure time-window based histograms are not fully rotated when we assert
Duration halfStep = step().dividedBy(2);
clock(registry).add(halfStep);
for (int val : new int[] { 22, 55, 66, 98 }) {
timer.record(Duration.ofMillis(val));
}
// accommodate StepBucketHistogram
clock(registry).add(halfStep);
HistogramSnapshot snapshot = timer.takeSnapshot();
CountAtBucket[] countAtBuckets = snapshot.histogramCounts();
assertHistogramBuckets(countAtBuckets, TimeUnit.MILLISECONDS);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy