io.milvus.param.dml.ranker.WeightedRanker Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of milvus-sdk-java Show documentation
Show all versions of milvus-sdk-java Show documentation
Java SDK for Milvus, a distributed high-performance vector database.
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package io.milvus.param.dml.ranker;
import com.google.gson.JsonObject;
import io.milvus.common.utils.JsonUtils;
import io.milvus.exception.ParamException;
import lombok.Getter;
import lombok.NonNull;
import lombok.ToString;
import java.util.*;
/**
* The Average Weighted Scoring reranking strategy, which prioritizes vectors based on relevance,
* averaging their significance.
*/
@Getter
@ToString
public class WeightedRanker extends BaseRanker {
private final List weights;
private WeightedRanker(@NonNull Builder builder) {
this.weights = builder.weights;
}
@Override
public Map getProperties() {
JsonObject params = new JsonObject();
params.add("weights", JsonUtils.toJsonTree(this.weights).getAsJsonArray());
Map props = new HashMap<>();
props.put("strategy", "weighted");
props.put("params", params.toString());
return props;
}
public static Builder newBuilder() {
return new Builder();
}
/**
* Builder for {@link WeightedRanker} class.
*/
public static class Builder {
private List weights = new ArrayList<>();
private Builder() {
}
/**
* Assign weights for each AnnSearchParam. The length of weights must be equal to number of AnnSearchParam.
* You can assign any float value for weight, the sum of weight values can exceed 1.
* The distance/similarity values of each field will be mapped into a range of [0,1],
* and score = sum(weights[i] * distance_i_in_[0,1])
*
* @param weights weight values
* @return Builder
*/
public Builder withWeights(@NonNull List weights) {
this.weights = weights;
return this;
}
/**
* Verifies parameters and creates a new {@link WeightedRanker} instance.
*
* @return {@link WeightedRanker}
*/
public WeightedRanker build() throws ParamException {
return new WeightedRanker(this);
}
}
}