monix.execution.atomic.Atomic.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2014-2019 by The Monix Project Developers.
* See the project homepage at: https://monix.io
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package monix.execution.atomic
import monix.execution.misc._
import scala.reflect.macros.whitebox
import monix.execution.atomic.PaddingStrategy.NoPadding
/**
* Base trait of all atomic references, no matter the type.
*/
abstract class Atomic[A] extends Serializable {
/** Get the current value persisted by this Atomic. */
def get(): A
/** Get the current value persisted by this Atomic, an alias for `get()`. */
final def apply(): A = macro Atomic.Macros.applyMacro[A]
/** Updates the current value.
*
* @param update will be the new value returned by `get()`
*/
def set(update: A): Unit
/** Alias for [[set]]. Updates the current value.
*
* @param value will be the new value returned by `get()`
*/
final def update(value: A): Unit = macro Atomic.Macros.setMacro[A]
/** Alias for [[set]]. Updates the current value.
*
* @param value will be the new value returned by `get()`
*/
final def `:=`(value: A): Unit = macro Atomic.Macros.setMacro[A]
/** Does a compare-and-set operation on the current value. For more info, checkout the related
* [[https://en.wikipedia.org/wiki/Compare-and-swap Compare-and-swap Wikipedia page]].
*
* It's an atomic, worry free operation.
*
* @param expect is the value you expect to be persisted when the operation happens
* @param update will be the new value, should the check for `expect` succeeds
* @return either true in case the operation succeeded or false otherwise
*/
def compareAndSet(expect: A, update: A): Boolean
/** Sets the persisted value to `update` and returns the old value that was in place.
* It's an atomic, worry free operation.
*/
def getAndSet(update: A): A
/** Eventually sets to the given value.
* Has weaker visibility guarantees than the normal `set()`.
*/
final def lazySet(value: A): Unit = macro Atomic.Macros.setMacro[A]
/** Abstracts over `compareAndSet`. You specify a transformation by specifying a callback to be
* executed, a callback that transforms the current value. This method will loop until it will
* succeed in replacing the current value with the one produced by your callback.
*
* Note that the callback will be executed on each iteration of the loop, so it can be called
* multiple times - don't do destructive I/O or operations that mutate global state in it.
*
* @param cb is a callback that receives the current value as input and returns a tuple that specifies
* the update + what should this method return when the operation succeeds.
* @return whatever was specified by your callback, once the operation succeeds
*/
final def transformAndExtract[U](cb: (A) => (U, A)): U =
macro Atomic.Macros.transformAndExtractMacro[A, U]
/** Abstracts over `compareAndSet`. You specify a transformation by specifying a callback to be
* executed, a callback that transforms the current value. This method will loop until it will
* succeed in replacing the current value with the one produced by the given callback.
*
* Note that the callback will be executed on each iteration of the loop, so it can be called
* multiple times - don't do destructive I/O or operations that mutate global state in it.
*
* @param cb is a callback that receives the current value as input and returns the `update` which is the
* new value that should be persisted
* @return whatever the update is, after the operation succeeds
*/
final def transformAndGet(cb: (A) => A): A =
macro Atomic.Macros.transformAndGetMacro[A]
/** Abstracts over `compareAndSet`. You specify a transformation by specifying a callback to be
* executed, a callback that transforms the current value. This method will loop until it will
* succeed in replacing the current value with the one produced by the given callback.
*
* Note that the callback will be executed on each iteration of the loop, so it can be called
* multiple times - don't do destructive I/O or operations that mutate global state in it.
*
* @param cb is a callback that receives the current value as input and returns the `update` which is the
* new value that should be persisted
* @return the old value, just prior to when the successful update happened
*/
final def getAndTransform(cb: (A) => A): A =
macro Atomic.Macros.getAndTransformMacro[A]
/** Abstracts over `compareAndSet`. You specify a transformation by specifying a callback to be
* executed, a callback that transforms the current value. This method will loop until it will
* succeed in replacing the current value with the one produced by the given callback.
*
* Note that the callback will be executed on each iteration of the loop, so it can be called
* multiple times - don't do destructive I/O or operations that mutate global state in it.
*
* @param cb is a callback that receives the current value as input and returns the `update` which is the
* new value that should be persisted
*/
final def transform(cb: (A) => A): Unit =
macro Atomic.Macros.transformMacro[A]
}
object Atomic {
/** Constructs an `Atomic[A]` reference.
*
* Based on the `initialValue`, it will return the best, most
* specific type. E.g. you give it a number, it will return
* something inheriting from `AtomicNumber[A]`. That's why it takes
* an `AtomicBuilder[T, R]` as an implicit parameter - but worry
* not about such details as it just works.
*
* @param initialValue is the initial value with which to
* initialize the Atomic reference
*
* @param builder is the builder that helps us to build the
* best reference possible, based on our `initialValue`
*/
def apply[A, R <: Atomic[A]](initialValue: A)(implicit builder: AtomicBuilder[A, R]): R =
macro Atomic.Macros.buildAnyMacro[A, R]
/** Constructs an `Atomic[A]` reference, applying the provided
* [[PaddingStrategy]] in order to counter the "false sharing"
* problem.
*
* Based on the `initialValue`, it will return the best, most
* specific type. E.g. you give it a number, it will return
* something inheriting from `AtomicNumber[A]`. That's why it takes
* an `AtomicBuilder[A, R]` as an implicit parameter - but worry
* not about such details as it just works.
*
* Note that for ''Scala.js'' we aren't applying any padding, as it
* doesn't make much sense, since Javascript execution is single
* threaded, but this builder is provided for syntax compatibility
* anyway across the JVM and Javascript and we never know how
* Javascript engines will evolve.
*
* @param initialValue is the initial value with which to
* initialize the Atomic reference
*
* @param padding is the [[PaddingStrategy]] to apply
*
* @param builder is the builder that helps us to build the
* best reference possible, based on our `initialValue`
*/
def withPadding[A, R <: Atomic[A]](initialValue: A, padding: PaddingStrategy)(
implicit builder: AtomicBuilder[A, R]): R =
macro Atomic.Macros.buildAnyWithPaddingMacro[A, R]
/** Returns the builder that would be chosen to construct Atomic
* references for the given `initialValue`.
*/
def builderFor[A, R <: Atomic[A]](initialValue: A)(implicit builder: AtomicBuilder[A, R]): AtomicBuilder[A, R] =
builder
/** Macros implementations for the [[Atomic]] type */
class Macros(override val c: whitebox.Context) extends InlineMacros with HygieneUtilMacros {
import c.universe._
def transformMacro[A: c.WeakTypeTag](cb: c.Expr[A => A]): c.Expr[Unit] = {
val selfExpr = c.Expr[Atomic[A]](c.prefix.tree)
val self = util.name("self")
/* If our arguments are all clean (stable identifiers or simple functions)
* then inline them directly, otherwise bind arguments to a val for safety.
*/
val tree =
if (util.isClean(cb))
q"""
val $self = $selfExpr
$self.set($cb($self.get))
"""
else {
val fn = util.name("fn")
q"""
val $self = $selfExpr
val $fn = $cb
$self.set($fn($self.get))
"""
}
inlineAndReset[Unit](tree)
}
def transformAndGetMacro[A: c.WeakTypeTag](cb: c.Expr[A => A]): c.Expr[A] = {
val selfExpr = c.Expr[Atomic[A]](c.prefix.tree)
val self = util.name("self")
val current = util.name("current")
val update = util.name("update")
/* If our arguments are all clean (stable identifiers or simple functions)
* then inline them directly, otherwise bind arguments to a val for safety.
*/
val tree =
if (util.isClean(cb)) {
q"""
val $self = $selfExpr
val $current = $self.get
val $update = $cb($current)
$self.set($update)
$update
"""
} else {
val fn = util.name("fn")
q"""
val $self = $selfExpr
val $fn = $cb
val $current = $self.get
val $update = $fn($current)
$self.set($update)
$update
"""
}
inlineAndReset[A](tree)
}
def getAndTransformMacro[A: c.WeakTypeTag](cb: c.Expr[A => A]): c.Expr[A] = {
val selfExpr = c.Expr[Atomic[A]](c.prefix.tree)
val self = util.name("self")
val current = util.name("current")
val update = util.name("update")
/* If our arguments are all clean (stable identifiers or simple functions)
* then inline them directly, otherwise bind arguments to a val for safety.
*/
val tree =
if (util.isClean(cb)) {
q"""
val $self = $selfExpr
val $current = $self.get
val $update = $cb($current)
$self.set($update)
$current
"""
} else {
val fn = util.name("fn")
q"""
val $self = $selfExpr
val $fn = $cb
val $current = $self.get
val $update = $fn($current)
$self.set($update)
$current
"""
}
inlineAndReset[A](tree)
}
def transformAndExtractMacro[S: c.WeakTypeTag, A: c.WeakTypeTag](cb: c.Expr[S => (A, S)]): c.Expr[A] = {
val selfExpr = c.Expr[Atomic[S]](c.prefix.tree)
val self = util.name("self")
val current = util.name("current")
val update = util.name("update")
val result = util.name("result")
/* If our arguments are all clean (stable identifiers or simple functions)
* then inline them directly, otherwise bind arguments to a val for safety.
*/
val tree =
if (util.isClean(cb)) {
q"""
val $self = $selfExpr
val $current = $self.get
val ($result, $update) = $cb($current)
$self.set($update)
$result
"""
} else {
val fn = util.name("fn")
q"""
val $self = $selfExpr
val $fn = $cb
val $current = $self.get
val ($result, $update) = $fn($current)
$self.set($update)
$result
"""
}
inlineAndReset[A](tree)
}
def buildAnyMacro[A: c.WeakTypeTag, R <: Atomic[A]: c.WeakTypeTag](initialValue: c.Expr[A])(
builder: c.Expr[AtomicBuilder[A, R]]): c.Expr[R] = {
val expr = reify {
builder.splice.buildInstance(initialValue.splice, NoPadding, allowPlatformIntrinsics = true)
}
inlineAndReset[R](expr.tree)
}
def buildAnyWithPaddingMacro[A: c.WeakTypeTag, R <: Atomic[A]: c.WeakTypeTag](
initialValue: c.Expr[A],
padding: c.Expr[PaddingStrategy])(builder: c.Expr[AtomicBuilder[A, R]]): c.Expr[R] = {
val expr = reify {
builder.splice.buildInstance(initialValue.splice, padding.splice, allowPlatformIntrinsics = true)
}
inlineAndReset[R](expr.tree)
}
def applyMacro[A: c.WeakTypeTag](): c.Expr[A] = {
val selfExpr = c.Expr[Atomic[A]](c.prefix.tree)
val tree = q"""$selfExpr.get"""
inlineAndReset[A](tree)
}
def setMacro[A: c.WeakTypeTag](value: c.Expr[A]): c.Expr[Unit] = {
val selfExpr = c.Expr[Atomic[A]](c.prefix.tree)
val tree = q"""$selfExpr.set($value)"""
inlineAndReset[Unit](tree)
}
def addMacro[A: c.WeakTypeTag](value: c.Expr[A]): c.Expr[Unit] = {
val selfExpr = c.Expr[Atomic[A]](c.prefix.tree)
val tree = q"""$selfExpr.add($value)"""
inlineAndReset[Unit](tree)
}
def subtractMacro[A: c.WeakTypeTag](value: c.Expr[A]): c.Expr[Unit] = {
val selfExpr = c.Expr[Atomic[A]](c.prefix.tree)
val tree = q"""$selfExpr.subtract($value)"""
inlineAndReset[Unit](tree)
}
}
}