All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.netty.handler.ssl.SslHandler Maven / Gradle / Ivy

/*
 * Copyright 2012 The Netty Project
 *
 * The Netty Project licenses this file to you under the Apache License,
 * version 2.0 (the "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at:
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 */
package io.netty.handler.ssl;

import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;
import io.netty.buffer.ByteBufUtil;
import io.netty.buffer.CompositeByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.AbstractCoalescingBufferQueue;
import io.netty.channel.Channel;
import io.netty.channel.ChannelConfig;
import io.netty.channel.ChannelException;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelFutureListener;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandler;
import io.netty.channel.ChannelOutboundHandler;
import io.netty.channel.ChannelPipeline;
import io.netty.channel.ChannelPromise;
import io.netty.channel.ChannelPromiseNotifier;
import io.netty.handler.codec.ByteToMessageDecoder;
import io.netty.handler.codec.UnsupportedMessageTypeException;
import io.netty.util.ReferenceCounted;
import io.netty.util.concurrent.DefaultPromise;
import io.netty.util.concurrent.EventExecutor;
import io.netty.util.concurrent.Future;
import io.netty.util.concurrent.FutureListener;
import io.netty.util.concurrent.ImmediateExecutor;
import io.netty.util.concurrent.Promise;
import io.netty.util.internal.PlatformDependent;
import io.netty.util.internal.ThrowableUtil;
import io.netty.util.internal.UnstableApi;
import io.netty.util.internal.logging.InternalLogger;
import io.netty.util.internal.logging.InternalLoggerFactory;

import java.io.IOException;
import java.net.SocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.ClosedChannelException;
import java.nio.channels.DatagramChannel;
import java.nio.channels.SocketChannel;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.Executor;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.TimeUnit;
import java.util.regex.Pattern;

import javax.net.ssl.SSLEngine;
import javax.net.ssl.SSLEngineResult;
import javax.net.ssl.SSLEngineResult.HandshakeStatus;
import javax.net.ssl.SSLEngineResult.Status;
import javax.net.ssl.SSLException;
import javax.net.ssl.SSLSession;

import static io.netty.buffer.ByteBufUtil.ensureWritableSuccess;
import static io.netty.handler.ssl.SslUtils.getEncryptedPacketLength;

/**
 * Adds SSL
 * · TLS and StartTLS support to a {@link Channel}.  Please refer
 * to the "SecureChat" example in the distribution or the web
 * site for the detailed usage.
 *
 * 

Beginning the handshake

*

* Beside using the handshake {@link ChannelFuture} to get notified about the completion of the handshake it's * also possible to detect it by implement the * {@link ChannelInboundHandler#userEventTriggered(ChannelHandlerContext, Object)} * method and check for a {@link SslHandshakeCompletionEvent}. * *

Handshake

*

* The handshake will be automatically issued for you once the {@link Channel} is active and * {@link SSLEngine#getUseClientMode()} returns {@code true}. * So no need to bother with it by your self. * *

Closing the session

*

* To close the SSL session, the {@link #close()} method should be * called to send the {@code close_notify} message to the remote peer. One * exception is when you close the {@link Channel} - {@link SslHandler} * intercepts the close request and send the {@code close_notify} message * before the channel closure automatically. Once the SSL session is closed, * it is not reusable, and consequently you should create a new * {@link SslHandler} with a new {@link SSLEngine} as explained in the * following section. * *

Restarting the session

*

* To restart the SSL session, you must remove the existing closed * {@link SslHandler} from the {@link ChannelPipeline}, insert a new * {@link SslHandler} with a new {@link SSLEngine} into the pipeline, * and start the handshake process as described in the first section. * *

Implementing StartTLS

*

* StartTLS is the * communication pattern that secures the wire in the middle of the plaintext * connection. Please note that it is different from SSL · TLS, that * secures the wire from the beginning of the connection. Typically, StartTLS * is composed of three steps: *

    *
  1. Client sends a StartTLS request to server.
  2. *
  3. Server sends a StartTLS response to client.
  4. *
  5. Client begins SSL handshake.
  6. *
* If you implement a server, you need to: *
    *
  1. create a new {@link SslHandler} instance with {@code startTls} flag set * to {@code true},
  2. *
  3. insert the {@link SslHandler} to the {@link ChannelPipeline}, and
  4. *
  5. write a StartTLS response.
  6. *
* Please note that you must insert {@link SslHandler} before sending * the StartTLS response. Otherwise the client can send begin SSL handshake * before {@link SslHandler} is inserted to the {@link ChannelPipeline}, causing * data corruption. *

* The client-side implementation is much simpler. *

    *
  1. Write a StartTLS request,
  2. *
  3. wait for the StartTLS response,
  4. *
  5. create a new {@link SslHandler} instance with {@code startTls} flag set * to {@code false},
  6. *
  7. insert the {@link SslHandler} to the {@link ChannelPipeline}, and
  8. *
  9. Initiate SSL handshake.
  10. *
* *

Known issues

*

* Because of a known issue with the current implementation of the SslEngine that comes * with Java it may be possible that you see blocked IO-Threads while a full GC is done. *

* So if you are affected you can workaround this problem by adjust the cache settings * like shown below: * *

 *     SslContext context = ...;
 *     context.getServerSessionContext().setSessionCacheSize(someSaneSize);
 *     context.getServerSessionContext().setSessionTime(someSameTimeout);
 * 
*

* What values to use here depends on the nature of your application and should be set * based on monitoring and debugging of it. * For more details see * #832 in our issue tracker. */ public class SslHandler extends ByteToMessageDecoder implements ChannelOutboundHandler { private static final InternalLogger logger = InternalLoggerFactory.getInstance(SslHandler.class); private static final Pattern IGNORABLE_CLASS_IN_STACK = Pattern.compile( "^.*(?:Socket|Datagram|Sctp|Udt)Channel.*$"); private static final Pattern IGNORABLE_ERROR_MESSAGE = Pattern.compile( "^.*(?:connection.*(?:reset|closed|abort|broken)|broken.*pipe).*$", Pattern.CASE_INSENSITIVE); /** * Used in {@link #unwrapNonAppData(ChannelHandlerContext)} as input for * {@link #unwrap(ChannelHandlerContext, ByteBuf, int, int)}. Using this static instance reduce object * creation as {@link Unpooled#EMPTY_BUFFER#nioBuffer()} creates a new {@link ByteBuffer} everytime. */ private static final SSLException SSLENGINE_CLOSED = ThrowableUtil.unknownStackTrace( new SSLException("SSLEngine closed already"), SslHandler.class, "wrap(...)"); private static final SSLException HANDSHAKE_TIMED_OUT = ThrowableUtil.unknownStackTrace( new SSLException("handshake timed out"), SslHandler.class, "handshake(...)"); private static final ClosedChannelException CHANNEL_CLOSED = ThrowableUtil.unknownStackTrace( new ClosedChannelException(), SslHandler.class, "channelInactive(...)"); /** * 2^14 which is the maximum sized plaintext chunk * allowed by the TLS RFC. */ private static final int MAX_PLAINTEXT_LENGTH = 16 * 1024; private enum SslEngineType { TCNATIVE(true, COMPOSITE_CUMULATOR) { @Override SSLEngineResult unwrap(SslHandler handler, ByteBuf in, int readerIndex, int len, ByteBuf out) throws SSLException { int nioBufferCount = in.nioBufferCount(); int writerIndex = out.writerIndex(); final SSLEngineResult result; if (nioBufferCount > 1) { /* * If {@link OpenSslEngine} is in use, * we can use a special {@link OpenSslEngine#unwrap(ByteBuffer[], ByteBuffer[])} method * that accepts multiple {@link ByteBuffer}s without additional memory copies. */ ReferenceCountedOpenSslEngine opensslEngine = (ReferenceCountedOpenSslEngine) handler.engine; try { handler.singleBuffer[0] = toByteBuffer(out, writerIndex, out.writableBytes()); result = opensslEngine.unwrap(in.nioBuffers(readerIndex, len), handler.singleBuffer); } finally { handler.singleBuffer[0] = null; } } else { result = handler.engine.unwrap(toByteBuffer(in, readerIndex, len), toByteBuffer(out, writerIndex, out.writableBytes())); } out.writerIndex(writerIndex + result.bytesProduced()); return result; } @Override int getPacketBufferSize(SslHandler handler) { return ((ReferenceCountedOpenSslEngine) handler.engine).maxEncryptedPacketLength0(); } @Override int calculateWrapBufferCapacity(SslHandler handler, int pendingBytes, int numComponents) { return ((ReferenceCountedOpenSslEngine) handler.engine).calculateMaxLengthForWrap(pendingBytes, numComponents); } @Override int calculatePendingData(SslHandler handler, int guess) { int sslPending = ((ReferenceCountedOpenSslEngine) handler.engine).sslPending(); return sslPending > 0 ? sslPending : guess; } }, CONSCRYPT(true, COMPOSITE_CUMULATOR) { @Override SSLEngineResult unwrap(SslHandler handler, ByteBuf in, int readerIndex, int len, ByteBuf out) throws SSLException { int nioBufferCount = in.nioBufferCount(); int writerIndex = out.writerIndex(); final SSLEngineResult result; if (nioBufferCount > 1) { /* * Use a special unwrap method without additional memory copies. */ try { handler.singleBuffer[0] = toByteBuffer(out, writerIndex, out.writableBytes()); result = ((ConscryptAlpnSslEngine) handler.engine).unwrap( in.nioBuffers(readerIndex, len), handler.singleBuffer); } finally { handler.singleBuffer[0] = null; } } else { result = handler.engine.unwrap(toByteBuffer(in, readerIndex, len), toByteBuffer(out, writerIndex, out.writableBytes())); } out.writerIndex(writerIndex + result.bytesProduced()); return result; } @Override int calculateWrapBufferCapacity(SslHandler handler, int pendingBytes, int numComponents) { return ((ConscryptAlpnSslEngine) handler.engine).calculateOutNetBufSize(pendingBytes, numComponents); } @Override int calculatePendingData(SslHandler handler, int guess) { return guess; } }, JDK(false, MERGE_CUMULATOR) { @Override SSLEngineResult unwrap(SslHandler handler, ByteBuf in, int readerIndex, int len, ByteBuf out) throws SSLException { int writerIndex = out.writerIndex(); final SSLEngineResult result = handler.engine.unwrap(toByteBuffer(in, readerIndex, len), toByteBuffer(out, writerIndex, out.writableBytes())); out.writerIndex(writerIndex + result.bytesProduced()); return result; } @Override int calculateWrapBufferCapacity(SslHandler handler, int pendingBytes, int numComponents) { return handler.engine.getSession().getPacketBufferSize(); } @Override int calculatePendingData(SslHandler handler, int guess) { return guess; } }; static SslEngineType forEngine(SSLEngine engine) { return engine instanceof ReferenceCountedOpenSslEngine ? TCNATIVE : engine instanceof ConscryptAlpnSslEngine ? CONSCRYPT : JDK; } SslEngineType(boolean wantsDirectBuffer, Cumulator cumulator) { this.wantsDirectBuffer = wantsDirectBuffer; this.cumulator = cumulator; } int getPacketBufferSize(SslHandler handler) { return handler.engine.getSession().getPacketBufferSize(); } abstract SSLEngineResult unwrap(SslHandler handler, ByteBuf in, int readerIndex, int len, ByteBuf out) throws SSLException; abstract int calculateWrapBufferCapacity(SslHandler handler, int pendingBytes, int numComponents); abstract int calculatePendingData(SslHandler handler, int guess); // BEGIN Platform-dependent flags /** * {@code true} if and only if {@link SSLEngine} expects a direct buffer. */ final boolean wantsDirectBuffer; // END Platform-dependent flags /** * When using JDK {@link SSLEngine}, we use {@link #MERGE_CUMULATOR} because it works only with * one {@link ByteBuffer}. * * When using {@link OpenSslEngine}, we can use {@link #COMPOSITE_CUMULATOR} because it has * {@link OpenSslEngine#unwrap(ByteBuffer[], ByteBuffer[])} which works with multiple {@link ByteBuffer}s * and which does not need to do extra memory copies. */ final Cumulator cumulator; } private volatile ChannelHandlerContext ctx; private final SSLEngine engine; private final SslEngineType engineType; private final Executor delegatedTaskExecutor; private final boolean jdkCompatibilityMode; /** * Used if {@link SSLEngine#wrap(ByteBuffer[], ByteBuffer)} and {@link SSLEngine#unwrap(ByteBuffer, ByteBuffer[])} * should be called with a {@link ByteBuf} that is only backed by one {@link ByteBuffer} to reduce the object * creation. */ private final ByteBuffer[] singleBuffer = new ByteBuffer[1]; private final boolean startTls; private boolean sentFirstMessage; private boolean flushedBeforeHandshake; private boolean readDuringHandshake; private final SslHandlerCoalescingBufferQueue pendingUnencryptedWrites = new SslHandlerCoalescingBufferQueue(16); private Promise handshakePromise = new LazyChannelPromise(); private final LazyChannelPromise sslClosePromise = new LazyChannelPromise(); /** * Set by wrap*() methods when something is produced. * {@link #channelReadComplete(ChannelHandlerContext)} will check this flag, clear it, and call ctx.flush(). */ private boolean needsFlush; private boolean outboundClosed; private int packetLength; /** * This flag is used to determine if we need to call {@link ChannelHandlerContext#read()} to consume more data * when {@link ChannelConfig#isAutoRead()} is {@code false}. */ private boolean firedChannelRead; private volatile long handshakeTimeoutMillis = 10000; private volatile long closeNotifyFlushTimeoutMillis = 3000; private volatile long closeNotifyReadTimeoutMillis; /** * Creates a new instance. * * @param engine the {@link SSLEngine} this handler will use */ public SslHandler(SSLEngine engine) { this(engine, false); } /** * Creates a new instance. * * @param engine the {@link SSLEngine} this handler will use * @param startTls {@code true} if the first write request shouldn't be * encrypted by the {@link SSLEngine} */ @SuppressWarnings("deprecation") public SslHandler(SSLEngine engine, boolean startTls) { this(engine, startTls, ImmediateExecutor.INSTANCE); } /** * @deprecated Use {@link #SslHandler(SSLEngine)} instead. */ @Deprecated public SslHandler(SSLEngine engine, Executor delegatedTaskExecutor) { this(engine, false, delegatedTaskExecutor); } /** * @deprecated Use {@link #SslHandler(SSLEngine, boolean)} instead. */ @Deprecated public SslHandler(SSLEngine engine, boolean startTls, Executor delegatedTaskExecutor) { this(engine, startTls, true, delegatedTaskExecutor); } SslHandler(SSLEngine engine, boolean startTls, boolean jdkCompatibilityMode) { this(engine, startTls, jdkCompatibilityMode, ImmediateExecutor.INSTANCE); } SslHandler(SSLEngine engine, boolean startTls, boolean jdkCompatibilityMode, Executor delegatedTaskExecutor) { if (engine == null) { throw new NullPointerException("engine"); } if (delegatedTaskExecutor == null) { throw new NullPointerException("delegatedTaskExecutor"); } this.engine = engine; engineType = SslEngineType.forEngine(engine); this.delegatedTaskExecutor = delegatedTaskExecutor; this.startTls = startTls; this.jdkCompatibilityMode = jdkCompatibilityMode; setCumulator(engineType.cumulator); } public long getHandshakeTimeoutMillis() { return handshakeTimeoutMillis; } public void setHandshakeTimeout(long handshakeTimeout, TimeUnit unit) { if (unit == null) { throw new NullPointerException("unit"); } setHandshakeTimeoutMillis(unit.toMillis(handshakeTimeout)); } public void setHandshakeTimeoutMillis(long handshakeTimeoutMillis) { if (handshakeTimeoutMillis < 0) { throw new IllegalArgumentException( "handshakeTimeoutMillis: " + handshakeTimeoutMillis + " (expected: >= 0)"); } this.handshakeTimeoutMillis = handshakeTimeoutMillis; } /** * Sets the number of bytes to pass to each {@link SSLEngine#wrap(ByteBuffer[], int, int, ByteBuffer)} call. *

* This value will partition data which is passed to write * {@link #write(ChannelHandlerContext, Object, ChannelPromise)}. The partitioning will work as follows: *

    *
  • If {@code wrapDataSize <= 0} then we will write each data chunk as is.
  • *
  • If {@code wrapDataSize > data size} then we will attempt to aggregate multiple data chunks together.
  • *
  • If {@code wrapDataSize > data size} Else if {@code wrapDataSize <= data size} then we will divide the data * into chunks of {@code wrapDataSize} when writing.
  • *
*

* If the {@link SSLEngine} doesn't support a gather wrap operation (e.g. {@link SslProvider#OPENSSL}) then * aggregating data before wrapping can help reduce the ratio between TLS overhead vs data payload which will lead * to better goodput. Writing fixed chunks of data can also help target the underlying transport's (e.g. TCP) * frame size. Under lossy/congested network conditions this may help the peer get full TLS packets earlier and * be able to do work sooner, as opposed to waiting for the all the pieces of the TLS packet to arrive. * @param wrapDataSize the number of bytes which will be passed to each * {@link SSLEngine#wrap(ByteBuffer[], int, int, ByteBuffer)} call. */ @UnstableApi public final void setWrapDataSize(int wrapDataSize) { pendingUnencryptedWrites.wrapDataSize = wrapDataSize; } /** * @deprecated use {@link #getCloseNotifyFlushTimeoutMillis()} */ @Deprecated public long getCloseNotifyTimeoutMillis() { return getCloseNotifyFlushTimeoutMillis(); } /** * @deprecated use {@link #setCloseNotifyFlushTimeout(long, TimeUnit)} */ @Deprecated public void setCloseNotifyTimeout(long closeNotifyTimeout, TimeUnit unit) { setCloseNotifyFlushTimeout(closeNotifyTimeout, unit); } /** * @deprecated use {@link #setCloseNotifyFlushTimeoutMillis(long)} */ @Deprecated public void setCloseNotifyTimeoutMillis(long closeNotifyFlushTimeoutMillis) { setCloseNotifyFlushTimeoutMillis(closeNotifyFlushTimeoutMillis); } /** * Gets the timeout for flushing the close_notify that was triggered by closing the * {@link Channel}. If the close_notify was not flushed in the given timeout the {@link Channel} will be closed * forcibly. */ public final long getCloseNotifyFlushTimeoutMillis() { return closeNotifyFlushTimeoutMillis; } /** * Sets the timeout for flushing the close_notify that was triggered by closing the * {@link Channel}. If the close_notify was not flushed in the given timeout the {@link Channel} will be closed * forcibly. */ public final void setCloseNotifyFlushTimeout(long closeNotifyFlushTimeout, TimeUnit unit) { setCloseNotifyFlushTimeoutMillis(unit.toMillis(closeNotifyFlushTimeout)); } /** * See {@link #setCloseNotifyFlushTimeout(long, TimeUnit)}. */ public final void setCloseNotifyFlushTimeoutMillis(long closeNotifyFlushTimeoutMillis) { if (closeNotifyFlushTimeoutMillis < 0) { throw new IllegalArgumentException( "closeNotifyFlushTimeoutMillis: " + closeNotifyFlushTimeoutMillis + " (expected: >= 0)"); } this.closeNotifyFlushTimeoutMillis = closeNotifyFlushTimeoutMillis; } /** * Gets the timeout (in ms) for receiving the response for the close_notify that was triggered by closing the * {@link Channel}. This timeout starts after the close_notify message was successfully written to the * remote peer. Use {@code 0} to directly close the {@link Channel} and not wait for the response. */ public final long getCloseNotifyReadTimeoutMillis() { return closeNotifyReadTimeoutMillis; } /** * Sets the timeout for receiving the response for the close_notify that was triggered by closing the * {@link Channel}. This timeout starts after the close_notify message was successfully written to the * remote peer. Use {@code 0} to directly close the {@link Channel} and not wait for the response. */ public final void setCloseNotifyReadTimeout(long closeNotifyReadTimeout, TimeUnit unit) { setCloseNotifyReadTimeoutMillis(unit.toMillis(closeNotifyReadTimeout)); } /** * See {@link #setCloseNotifyReadTimeout(long, TimeUnit)}. */ public final void setCloseNotifyReadTimeoutMillis(long closeNotifyReadTimeoutMillis) { if (closeNotifyReadTimeoutMillis < 0) { throw new IllegalArgumentException( "closeNotifyReadTimeoutMillis: " + closeNotifyReadTimeoutMillis + " (expected: >= 0)"); } this.closeNotifyReadTimeoutMillis = closeNotifyReadTimeoutMillis; } /** * Returns the {@link SSLEngine} which is used by this handler. */ public SSLEngine engine() { return engine; } /** * Returns the name of the current application-level protocol. * * @return the protocol name or {@code null} if application-level protocol has not been negotiated */ public String applicationProtocol() { SSLEngine engine = engine(); if (!(engine instanceof ApplicationProtocolAccessor)) { return null; } return ((ApplicationProtocolAccessor) engine).getApplicationProtocol(); } /** * Returns a {@link Future} that will get notified once the current TLS handshake completes. * * @return the {@link Future} for the initial TLS handshake if {@link #renegotiate()} was not invoked. * The {@link Future} for the most recent {@linkplain #renegotiate() TLS renegotiation} otherwise. */ public Future handshakeFuture() { return handshakePromise; } /** * Sends an SSL {@code close_notify} message to the specified channel and * destroys the underlying {@link SSLEngine}. * * @deprecated use {@link Channel#close()} or {@link ChannelHandlerContext#close()} */ @Deprecated public ChannelFuture close() { return close(ctx.newPromise()); } /** * See {@link #close()} * * @deprecated use {@link Channel#close()} or {@link ChannelHandlerContext#close()} */ @Deprecated public ChannelFuture close(final ChannelPromise promise) { final ChannelHandlerContext ctx = this.ctx; ctx.executor().execute(new Runnable() { @Override public void run() { outboundClosed = true; engine.closeOutbound(); try { flush(ctx, promise); } catch (Exception e) { if (!promise.tryFailure(e)) { logger.warn("{} flush() raised a masked exception.", ctx.channel(), e); } } } }); return promise; } /** * Return the {@link Future} that will get notified if the inbound of the {@link SSLEngine} is closed. * * This method will return the same {@link Future} all the time. * * @see SSLEngine */ public Future sslCloseFuture() { return sslClosePromise; } @Override public void handlerRemoved0(ChannelHandlerContext ctx) throws Exception { if (!pendingUnencryptedWrites.isEmpty()) { // Check if queue is not empty first because create a new ChannelException is expensive pendingUnencryptedWrites.releaseAndFailAll(ctx, new ChannelException("Pending write on removal of SslHandler")); } if (engine instanceof ReferenceCounted) { ((ReferenceCounted) engine).release(); } } @Override public void bind(ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise) throws Exception { ctx.bind(localAddress, promise); } @Override public void connect(ChannelHandlerContext ctx, SocketAddress remoteAddress, SocketAddress localAddress, ChannelPromise promise) throws Exception { ctx.connect(remoteAddress, localAddress, promise); } @Override public void deregister(ChannelHandlerContext ctx, ChannelPromise promise) throws Exception { ctx.deregister(promise); } @Override public void disconnect(final ChannelHandlerContext ctx, final ChannelPromise promise) throws Exception { closeOutboundAndChannel(ctx, promise, true); } @Override public void close(final ChannelHandlerContext ctx, final ChannelPromise promise) throws Exception { closeOutboundAndChannel(ctx, promise, false); } @Override public void read(ChannelHandlerContext ctx) throws Exception { if (!handshakePromise.isDone()) { readDuringHandshake = true; } ctx.read(); } @Override public void write(final ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception { if (!(msg instanceof ByteBuf)) { promise.setFailure(new UnsupportedMessageTypeException(msg, ByteBuf.class)); return; } pendingUnencryptedWrites.add((ByteBuf) msg, promise); } @Override public void flush(ChannelHandlerContext ctx) throws Exception { // Do not encrypt the first write request if this handler is // created with startTLS flag turned on. if (startTls && !sentFirstMessage) { sentFirstMessage = true; pendingUnencryptedWrites.writeAndRemoveAll(ctx); forceFlush(ctx); return; } try { wrapAndFlush(ctx); } catch (Throwable cause) { setHandshakeFailure(ctx, cause); PlatformDependent.throwException(cause); } } private void wrapAndFlush(ChannelHandlerContext ctx) throws SSLException { if (pendingUnencryptedWrites.isEmpty()) { // It's important to NOT use a voidPromise here as the user // may want to add a ChannelFutureListener to the ChannelPromise later. // // See https://github.com/netty/netty/issues/3364 pendingUnencryptedWrites.add(Unpooled.EMPTY_BUFFER, ctx.newPromise()); } if (!handshakePromise.isDone()) { flushedBeforeHandshake = true; } try { wrap(ctx, false); } finally { // We may have written some parts of data before an exception was thrown so ensure we always flush. // See https://github.com/netty/netty/issues/3900#issuecomment-172481830 forceFlush(ctx); } } // This method will not call setHandshakeFailure(...) ! private void wrap(ChannelHandlerContext ctx, boolean inUnwrap) throws SSLException { ByteBuf out = null; ChannelPromise promise = null; ByteBufAllocator alloc = ctx.alloc(); boolean needUnwrap = false; try { final int wrapDataSize = pendingUnencryptedWrites.wrapDataSize; // Only continue to loop if the handler was not removed in the meantime. // See https://github.com/netty/netty/issues/5860 while (!ctx.isRemoved()) { promise = ctx.newPromise(); ByteBuf buf = wrapDataSize > 0 ? pendingUnencryptedWrites.remove(alloc, wrapDataSize, promise) : pendingUnencryptedWrites.removeFirst(promise); if (buf == null) { break; } if (out == null) { out = allocateOutNetBuf(ctx, buf.readableBytes(), buf.nioBufferCount()); } SSLEngineResult result = wrap(alloc, engine, buf, out); if (result.getStatus() == Status.CLOSED) { buf.release(); promise.tryFailure(SSLENGINE_CLOSED); promise = null; // SSLEngine has been closed already. // Any further write attempts should be denied. pendingUnencryptedWrites.releaseAndFailAll(ctx, SSLENGINE_CLOSED); return; } else { if (buf.isReadable()) { pendingUnencryptedWrites.addFirst(buf); } else { buf.release(); } switch (result.getHandshakeStatus()) { case NEED_TASK: runDelegatedTasks(); break; case FINISHED: setHandshakeSuccess(); // deliberate fall-through case NOT_HANDSHAKING: setHandshakeSuccessIfStillHandshaking(); // deliberate fall-through case NEED_WRAP: finishWrap(ctx, out, promise, inUnwrap, false); promise = null; out = null; break; case NEED_UNWRAP: needUnwrap = true; return; default: throw new IllegalStateException( "Unknown handshake status: " + result.getHandshakeStatus()); } } } } finally { finishWrap(ctx, out, promise, inUnwrap, needUnwrap); } } private void finishWrap(ChannelHandlerContext ctx, ByteBuf out, ChannelPromise promise, boolean inUnwrap, boolean needUnwrap) { if (out == null) { out = Unpooled.EMPTY_BUFFER; } else if (!out.isReadable()) { out.release(); out = Unpooled.EMPTY_BUFFER; } if (promise != null) { ctx.write(out, promise); } else { ctx.write(out); } if (inUnwrap) { needsFlush = true; } if (needUnwrap) { // The underlying engine is starving so we need to feed it with more data. // See https://github.com/netty/netty/pull/5039 readIfNeeded(ctx); } } /** * This method will not call * {@link #setHandshakeFailure(ChannelHandlerContext, Throwable, boolean)} or * {@link #setHandshakeFailure(ChannelHandlerContext, Throwable)}. * @return {@code true} if this method ends on {@link SSLEngineResult.HandshakeStatus#NOT_HANDSHAKING}. */ private boolean wrapNonAppData(ChannelHandlerContext ctx, boolean inUnwrap) throws SSLException { ByteBuf out = null; ByteBufAllocator alloc = ctx.alloc(); try { // Only continue to loop if the handler was not removed in the meantime. // See https://github.com/netty/netty/issues/5860 while (!ctx.isRemoved()) { if (out == null) { // As this is called for the handshake we have no real idea how big the buffer needs to be. // That said 2048 should give us enough room to include everything like ALPN / NPN data. // If this is not enough we will increase the buffer in wrap(...). out = allocateOutNetBuf(ctx, 2048, 1); } SSLEngineResult result = wrap(alloc, engine, Unpooled.EMPTY_BUFFER, out); if (result.bytesProduced() > 0) { ctx.write(out); if (inUnwrap) { needsFlush = true; } out = null; } switch (result.getHandshakeStatus()) { case FINISHED: setHandshakeSuccess(); return false; case NEED_TASK: runDelegatedTasks(); break; case NEED_UNWRAP: if (inUnwrap) { // If we asked for a wrap, the engine requested an unwrap, and we are in unwrap there is // no use in trying to call wrap again because we have already attempted (or will after we // return) to feed more data to the engine. return false; } unwrapNonAppData(ctx); break; case NEED_WRAP: break; case NOT_HANDSHAKING: setHandshakeSuccessIfStillHandshaking(); // Workaround for TLS False Start problem reported at: // https://github.com/netty/netty/issues/1108#issuecomment-14266970 if (!inUnwrap) { unwrapNonAppData(ctx); } return true; default: throw new IllegalStateException("Unknown handshake status: " + result.getHandshakeStatus()); } if (result.bytesProduced() == 0) { break; } // It should not consume empty buffers when it is not handshaking // Fix for Android, where it was encrypting empty buffers even when not handshaking if (result.bytesConsumed() == 0 && result.getHandshakeStatus() == HandshakeStatus.NOT_HANDSHAKING) { break; } } } finally { if (out != null) { out.release(); } } return false; } private SSLEngineResult wrap(ByteBufAllocator alloc, SSLEngine engine, ByteBuf in, ByteBuf out) throws SSLException { ByteBuf newDirectIn = null; try { int readerIndex = in.readerIndex(); int readableBytes = in.readableBytes(); // We will call SslEngine.wrap(ByteBuffer[], ByteBuffer) to allow efficient handling of // CompositeByteBuf without force an extra memory copy when CompositeByteBuffer.nioBuffer() is called. final ByteBuffer[] in0; if (in.isDirect() || !engineType.wantsDirectBuffer) { // As CompositeByteBuf.nioBufferCount() can be expensive (as it needs to check all composed ByteBuf // to calculate the count) we will just assume a CompositeByteBuf contains more then 1 ByteBuf. // The worst that can happen is that we allocate an extra ByteBuffer[] in CompositeByteBuf.nioBuffers() // which is better then walking the composed ByteBuf in most cases. if (!(in instanceof CompositeByteBuf) && in.nioBufferCount() == 1) { in0 = singleBuffer; // We know its only backed by 1 ByteBuffer so use internalNioBuffer to keep object allocation // to a minimum. in0[0] = in.internalNioBuffer(readerIndex, readableBytes); } else { in0 = in.nioBuffers(); } } else { // We could even go further here and check if its a CompositeByteBuf and if so try to decompose it and // only replace the ByteBuffer that are not direct. At the moment we just will replace the whole // CompositeByteBuf to keep the complexity to a minimum newDirectIn = alloc.directBuffer(readableBytes); newDirectIn.writeBytes(in, readerIndex, readableBytes); in0 = singleBuffer; in0[0] = newDirectIn.internalNioBuffer(newDirectIn.readerIndex(), readableBytes); } for (;;) { ByteBuffer out0 = out.nioBuffer(out.writerIndex(), out.writableBytes()); SSLEngineResult result = engine.wrap(in0, out0); in.skipBytes(result.bytesConsumed()); out.writerIndex(out.writerIndex() + result.bytesProduced()); switch (result.getStatus()) { case BUFFER_OVERFLOW: out.ensureWritable(engine.getSession().getPacketBufferSize()); break; default: return result; } } } finally { // Null out to allow GC of ByteBuffer singleBuffer[0] = null; if (newDirectIn != null) { newDirectIn.release(); } } } @Override public void channelInactive(ChannelHandlerContext ctx) throws Exception { // Make sure to release SSLEngine, // and notify the handshake future if the connection has been closed during handshake. setHandshakeFailure(ctx, CHANNEL_CLOSED, !outboundClosed); // Ensure we always notify the sslClosePromise as well notifyClosePromise(CHANNEL_CLOSED); super.channelInactive(ctx); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { if (ignoreException(cause)) { // It is safe to ignore the 'connection reset by peer' or // 'broken pipe' error after sending close_notify. if (logger.isDebugEnabled()) { logger.debug( "{} Swallowing a harmless 'connection reset by peer / broken pipe' error that occurred " + "while writing close_notify in response to the peer's close_notify", ctx.channel(), cause); } // Close the connection explicitly just in case the transport // did not close the connection automatically. if (ctx.channel().isActive()) { ctx.close(); } } else { ctx.fireExceptionCaught(cause); } } /** * Checks if the given {@link Throwable} can be ignore and just "swallowed" * * When an ssl connection is closed a close_notify message is sent. * After that the peer also sends close_notify however, it's not mandatory to receive * the close_notify. The party who sent the initial close_notify can close the connection immediately * then the peer will get connection reset error. * */ private boolean ignoreException(Throwable t) { if (!(t instanceof SSLException) && t instanceof IOException && sslClosePromise.isDone()) { String message = t.getMessage(); // first try to match connection reset / broke peer based on the regex. This is the fastest way // but may fail on different jdk impls or OS's if (message != null && IGNORABLE_ERROR_MESSAGE.matcher(message).matches()) { return true; } // Inspect the StackTraceElements to see if it was a connection reset / broken pipe or not StackTraceElement[] elements = t.getStackTrace(); for (StackTraceElement element: elements) { String classname = element.getClassName(); String methodname = element.getMethodName(); // skip all classes that belong to the io.netty package if (classname.startsWith("io.netty.")) { continue; } // check if the method name is read if not skip it if (!"read".equals(methodname)) { continue; } // This will also match against SocketInputStream which is used by openjdk 7 and maybe // also others if (IGNORABLE_CLASS_IN_STACK.matcher(classname).matches()) { return true; } try { // No match by now.. Try to load the class via classloader and inspect it. // This is mainly done as other JDK implementations may differ in name of // the impl. Class clazz = PlatformDependent.getClassLoader(getClass()).loadClass(classname); if (SocketChannel.class.isAssignableFrom(clazz) || DatagramChannel.class.isAssignableFrom(clazz)) { return true; } // also match against SctpChannel via String matching as it may not present. if (PlatformDependent.javaVersion() >= 7 && "com.sun.nio.sctp.SctpChannel".equals(clazz.getSuperclass().getName())) { return true; } } catch (Throwable cause) { logger.debug("Unexpected exception while loading class {} classname {}", getClass(), classname, cause); } } } return false; } /** * Returns {@code true} if the given {@link ByteBuf} is encrypted. Be aware that this method * will not increase the readerIndex of the given {@link ByteBuf}. * * @param buffer * The {@link ByteBuf} to read from. Be aware that it must have at least 5 bytes to read, * otherwise it will throw an {@link IllegalArgumentException}. * @return encrypted * {@code true} if the {@link ByteBuf} is encrypted, {@code false} otherwise. * @throws IllegalArgumentException * Is thrown if the given {@link ByteBuf} has not at least 5 bytes to read. */ public static boolean isEncrypted(ByteBuf buffer) { if (buffer.readableBytes() < SslUtils.SSL_RECORD_HEADER_LENGTH) { throw new IllegalArgumentException( "buffer must have at least " + SslUtils.SSL_RECORD_HEADER_LENGTH + " readable bytes"); } return getEncryptedPacketLength(buffer, buffer.readerIndex()) != SslUtils.NOT_ENCRYPTED; } private void decodeJdkCompatible(ChannelHandlerContext ctx, ByteBuf in) throws NotSslRecordException { int packetLength = this.packetLength; // If we calculated the length of the current SSL record before, use that information. if (packetLength > 0) { if (in.readableBytes() < packetLength) { return; } } else { // Get the packet length and wait until we get a packets worth of data to unwrap. final int readableBytes = in.readableBytes(); if (readableBytes < SslUtils.SSL_RECORD_HEADER_LENGTH) { return; } packetLength = getEncryptedPacketLength(in, in.readerIndex()); if (packetLength == SslUtils.NOT_ENCRYPTED) { // Not an SSL/TLS packet NotSslRecordException e = new NotSslRecordException( "not an SSL/TLS record: " + ByteBufUtil.hexDump(in)); in.skipBytes(in.readableBytes()); // First fail the handshake promise as we may need to have access to the SSLEngine which may // be released because the user will remove the SslHandler in an exceptionCaught(...) implementation. setHandshakeFailure(ctx, e); throw e; } assert packetLength > 0; if (packetLength > readableBytes) { // wait until the whole packet can be read this.packetLength = packetLength; return; } } // Reset the state of this class so we can get the length of the next packet. We assume the entire packet will // be consumed by the SSLEngine. this.packetLength = 0; try { int bytesConsumed = unwrap(ctx, in, in.readerIndex(), packetLength); assert bytesConsumed == packetLength || engine.isInboundDone() : "we feed the SSLEngine a packets worth of data: " + packetLength + " but it only consumed: " + bytesConsumed; in.skipBytes(bytesConsumed); } catch (Throwable cause) { handleUnwrapThrowable(ctx, cause); } } private void decodeNonJdkCompatible(ChannelHandlerContext ctx, ByteBuf in) { try { in.skipBytes(unwrap(ctx, in, in.readerIndex(), in.readableBytes())); } catch (Throwable cause) { handleUnwrapThrowable(ctx, cause); } } private void handleUnwrapThrowable(ChannelHandlerContext ctx, Throwable cause) { try { // We need to flush one time as there may be an alert that we should send to the remote peer because // of the SSLException reported here. wrapAndFlush(ctx); } catch (SSLException ex) { logger.debug("SSLException during trying to call SSLEngine.wrap(...)" + " because of an previous SSLException, ignoring...", ex); } finally { setHandshakeFailure(ctx, cause); } PlatformDependent.throwException(cause); } @Override protected void decode(ChannelHandlerContext ctx, ByteBuf in, List out) throws SSLException { if (jdkCompatibilityMode) { decodeJdkCompatible(ctx, in); } else { decodeNonJdkCompatible(ctx, in); } } @Override public void channelReadComplete(ChannelHandlerContext ctx) throws Exception { // Discard bytes of the cumulation buffer if needed. discardSomeReadBytes(); flushIfNeeded(ctx); readIfNeeded(ctx); firedChannelRead = false; ctx.fireChannelReadComplete(); } private void readIfNeeded(ChannelHandlerContext ctx) { // If handshake is not finished yet, we need more data. if (!ctx.channel().config().isAutoRead() && (!firedChannelRead || !handshakePromise.isDone())) { // No auto-read used and no message passed through the ChannelPipeline or the handshake was not complete // yet, which means we need to trigger the read to ensure we not encounter any stalls. ctx.read(); } } private void flushIfNeeded(ChannelHandlerContext ctx) { if (needsFlush) { forceFlush(ctx); } } /** * Calls {@link SSLEngine#unwrap(ByteBuffer, ByteBuffer)} with an empty buffer to handle handshakes, etc. */ private void unwrapNonAppData(ChannelHandlerContext ctx) throws SSLException { unwrap(ctx, Unpooled.EMPTY_BUFFER, 0, 0); } /** * Unwraps inbound SSL records. */ private int unwrap( ChannelHandlerContext ctx, ByteBuf packet, int offset, int length) throws SSLException { final int originalLength = length; boolean wrapLater = false; boolean notifyClosure = false; ByteBuf decodeOut = allocate(ctx, length); try { // Only continue to loop if the handler was not removed in the meantime. // See https://github.com/netty/netty/issues/5860 unwrapLoop: while (!ctx.isRemoved()) { final SSLEngineResult result = engineType.unwrap(this, packet, offset, length, decodeOut); final Status status = result.getStatus(); final HandshakeStatus handshakeStatus = result.getHandshakeStatus(); final int produced = result.bytesProduced(); final int consumed = result.bytesConsumed(); // Update indexes for the next iteration offset += consumed; length -= consumed; switch (status) { case BUFFER_OVERFLOW: int readableBytes = decodeOut.readableBytes(); int bufferSize = engine.getSession().getApplicationBufferSize() - readableBytes; if (readableBytes > 0) { firedChannelRead = true; ctx.fireChannelRead(decodeOut); // This buffer was handled, null it out. decodeOut = null; if (bufferSize <= 0) { // It may happen that readableBytes >= engine.getSession().getApplicationBufferSize() // while there is still more to unwrap, in this case we will just allocate a new buffer // with the capacity of engine.getSession().getApplicationBufferSize() and call unwrap // again. bufferSize = engine.getSession().getApplicationBufferSize(); } } else { // This buffer was handled, null it out. decodeOut.release(); decodeOut = null; } // Allocate a new buffer which can hold all the rest data and loop again. // TODO: We may want to reconsider how we calculate the length here as we may // have more then one ssl message to decode. decodeOut = allocate(ctx, engineType.calculatePendingData(this, bufferSize)); continue; case CLOSED: // notify about the CLOSED state of the SSLEngine. See #137 notifyClosure = true; break; default: break; } switch (handshakeStatus) { case NEED_UNWRAP: break; case NEED_WRAP: // If the wrap operation transitions the status to NOT_HANDSHAKING and there is no more data to // unwrap then the next call to unwrap will not produce any data. We can avoid the potentially // costly unwrap operation and break out of the loop. if (wrapNonAppData(ctx, true) && length == 0) { break unwrapLoop; } break; case NEED_TASK: runDelegatedTasks(); break; case FINISHED: setHandshakeSuccess(); wrapLater = true; // We 'break' here and NOT 'continue' as android API version 21 has a bug where they consume // data from the buffer but NOT correctly set the SSLEngineResult.bytesConsumed(). // Because of this it will raise an exception on the next iteration of the for loop on android // API version 21. Just doing a break will work here as produced and consumed will both be 0 // and so we break out of the complete for (;;) loop and so call decode(...) again later on. // On other platforms this will have no negative effect as we will just continue with the // for (;;) loop if something was either consumed or produced. // // See: // - https://github.com/netty/netty/issues/4116 // - https://code.google.com/p/android/issues/detail?id=198639&thanks=198639&ts=1452501203 break; case NOT_HANDSHAKING: if (setHandshakeSuccessIfStillHandshaking()) { wrapLater = true; continue; } if (flushedBeforeHandshake) { // We need to call wrap(...) in case there was a flush done before the handshake completed. // // See https://github.com/netty/netty/pull/2437 flushedBeforeHandshake = false; wrapLater = true; } // If we are not handshaking and there is no more data to unwrap then the next call to unwrap // will not produce any data. We can avoid the potentially costly unwrap operation and break // out of the loop. if (length == 0) { break unwrapLoop; } break; default: throw new IllegalStateException("unknown handshake status: " + handshakeStatus); } if (status == Status.BUFFER_UNDERFLOW || consumed == 0 && produced == 0) { if (handshakeStatus == HandshakeStatus.NEED_UNWRAP) { // The underlying engine is starving so we need to feed it with more data. // See https://github.com/netty/netty/pull/5039 readIfNeeded(ctx); } break; } } if (wrapLater) { wrap(ctx, true); } if (notifyClosure) { notifyClosePromise(null); } } finally { if (decodeOut != null) { if (decodeOut.isReadable()) { firedChannelRead = true; ctx.fireChannelRead(decodeOut); } else { decodeOut.release(); } } } return originalLength - length; } private static ByteBuffer toByteBuffer(ByteBuf out, int index, int len) { return out.nioBufferCount() == 1 ? out.internalNioBuffer(index, len) : out.nioBuffer(index, len); } /** * Fetches all delegated tasks from the {@link SSLEngine} and runs them via the {@link #delegatedTaskExecutor}. * If the {@link #delegatedTaskExecutor} is {@link ImmediateExecutor}, just call {@link Runnable#run()} directly * instead of using {@link Executor#execute(Runnable)}. Otherwise, run the tasks via * the {@link #delegatedTaskExecutor} and wait until the tasks are finished. */ private void runDelegatedTasks() { if (delegatedTaskExecutor == ImmediateExecutor.INSTANCE) { for (;;) { Runnable task = engine.getDelegatedTask(); if (task == null) { break; } task.run(); } } else { final List tasks = new ArrayList(2); for (;;) { final Runnable task = engine.getDelegatedTask(); if (task == null) { break; } tasks.add(task); } if (tasks.isEmpty()) { return; } final CountDownLatch latch = new CountDownLatch(1); delegatedTaskExecutor.execute(new Runnable() { @Override public void run() { try { for (Runnable task: tasks) { task.run(); } } catch (Exception e) { ctx.fireExceptionCaught(e); } finally { latch.countDown(); } } }); boolean interrupted = false; while (latch.getCount() != 0) { try { latch.await(); } catch (InterruptedException e) { // Interrupt later. interrupted = true; } } if (interrupted) { Thread.currentThread().interrupt(); } } } /** * Works around some Android {@link SSLEngine} implementations that skip {@link HandshakeStatus#FINISHED} and * go straight into {@link HandshakeStatus#NOT_HANDSHAKING} when handshake is finished. * * @return {@code true} if and only if the workaround has been applied and thus {@link #handshakeFuture} has been * marked as success by this method */ private boolean setHandshakeSuccessIfStillHandshaking() { if (!handshakePromise.isDone()) { setHandshakeSuccess(); return true; } return false; } /** * Notify all the handshake futures about the successfully handshake */ private void setHandshakeSuccess() { handshakePromise.trySuccess(ctx.channel()); if (logger.isDebugEnabled()) { logger.debug("{} HANDSHAKEN: {}", ctx.channel(), engine.getSession().getCipherSuite()); } ctx.fireUserEventTriggered(SslHandshakeCompletionEvent.SUCCESS); if (readDuringHandshake && !ctx.channel().config().isAutoRead()) { readDuringHandshake = false; ctx.read(); } } /** * Notify all the handshake futures about the failure during the handshake. */ private void setHandshakeFailure(ChannelHandlerContext ctx, Throwable cause) { setHandshakeFailure(ctx, cause, true); } /** * Notify all the handshake futures about the failure during the handshake. */ private void setHandshakeFailure(ChannelHandlerContext ctx, Throwable cause, boolean closeInbound) { try { // Release all resources such as internal buffers that SSLEngine // is managing. engine.closeOutbound(); if (closeInbound) { try { engine.closeInbound(); } catch (SSLException e) { // only log in debug mode as it most likely harmless and latest chrome still trigger // this all the time. // // See https://github.com/netty/netty/issues/1340 String msg = e.getMessage(); if (msg == null || !msg.contains("possible truncation attack")) { logger.debug("{} SSLEngine.closeInbound() raised an exception.", ctx.channel(), e); } } } notifyHandshakeFailure(cause); } finally { // Ensure we remove and fail all pending writes in all cases and so release memory quickly. pendingUnencryptedWrites.releaseAndFailAll(ctx, cause); } } private void notifyHandshakeFailure(Throwable cause) { if (handshakePromise.tryFailure(cause)) { SslUtils.notifyHandshakeFailure(ctx, cause); } } private void notifyClosePromise(Throwable cause) { if (cause == null) { if (sslClosePromise.trySuccess(ctx.channel())) { ctx.fireUserEventTriggered(SslCloseCompletionEvent.SUCCESS); } } else { if (sslClosePromise.tryFailure(cause)) { ctx.fireUserEventTriggered(new SslCloseCompletionEvent(cause)); } } } private void closeOutboundAndChannel( final ChannelHandlerContext ctx, final ChannelPromise promise, boolean disconnect) throws Exception { if (!ctx.channel().isActive()) { if (disconnect) { ctx.disconnect(promise); } else { ctx.close(promise); } return; } outboundClosed = true; engine.closeOutbound(); ChannelPromise closeNotifyPromise = ctx.newPromise(); try { flush(ctx, closeNotifyPromise); } finally { // It's important that we do not pass the original ChannelPromise to safeClose(...) as when flush(....) // throws an Exception it will be propagated to the AbstractChannelHandlerContext which will try // to fail the promise because of this. This will then fail as it was already completed by safeClose(...). // We create a new ChannelPromise and try to notify the original ChannelPromise // once it is complete. If we fail to do so we just ignore it as in this case it was failed already // because of a propagated Exception. // // See https://github.com/netty/netty/issues/5931 safeClose(ctx, closeNotifyPromise, ctx.newPromise().addListener( new ChannelPromiseNotifier(false, promise))); } } private void flush(ChannelHandlerContext ctx, ChannelPromise promise) throws Exception { pendingUnencryptedWrites.add(Unpooled.EMPTY_BUFFER, promise); flush(ctx); } @Override public void handlerAdded(final ChannelHandlerContext ctx) throws Exception { this.ctx = ctx; if (ctx.channel().isActive() && engine.getUseClientMode()) { // Begin the initial handshake. // channelActive() event has been fired already, which means this.channelActive() will // not be invoked. We have to initialize here instead. handshake(null); } else { // channelActive() event has not been fired yet. this.channelOpen() will be invoked // and initialization will occur there. } } /** * Performs TLS renegotiation. */ public Future renegotiate() { ChannelHandlerContext ctx = this.ctx; if (ctx == null) { throw new IllegalStateException(); } return renegotiate(ctx.executor().newPromise()); } /** * Performs TLS renegotiation. */ public Future renegotiate(final Promise promise) { if (promise == null) { throw new NullPointerException("promise"); } ChannelHandlerContext ctx = this.ctx; if (ctx == null) { throw new IllegalStateException(); } EventExecutor executor = ctx.executor(); if (!executor.inEventLoop()) { executor.execute(new Runnable() { @Override public void run() { handshake(promise); } }); return promise; } handshake(promise); return promise; } /** * Performs TLS (re)negotiation. * * @param newHandshakePromise if {@code null}, use the existing {@link #handshakePromise}, * assuming that the current negotiation has not been finished. * Currently, {@code null} is expected only for the initial handshake. */ private void handshake(final Promise newHandshakePromise) { final Promise p; if (newHandshakePromise != null) { final Promise oldHandshakePromise = handshakePromise; if (!oldHandshakePromise.isDone()) { // There's no need to handshake because handshake is in progress already. // Merge the new promise into the old one. oldHandshakePromise.addListener(new FutureListener() { @Override public void operationComplete(Future future) throws Exception { if (future.isSuccess()) { newHandshakePromise.setSuccess(future.getNow()); } else { newHandshakePromise.setFailure(future.cause()); } } }); return; } handshakePromise = p = newHandshakePromise; } else if (engine.getHandshakeStatus() != HandshakeStatus.NOT_HANDSHAKING) { // Not all SSLEngine implementations support calling beginHandshake multiple times while a handshake // is in progress. See https://github.com/netty/netty/issues/4718. return; } else { // Forced to reuse the old handshake. p = handshakePromise; assert !p.isDone(); } // Begin handshake. final ChannelHandlerContext ctx = this.ctx; try { engine.beginHandshake(); wrapNonAppData(ctx, false); } catch (Throwable e) { setHandshakeFailure(ctx, e); } finally { forceFlush(ctx); } // Set timeout if necessary. final long handshakeTimeoutMillis = this.handshakeTimeoutMillis; if (handshakeTimeoutMillis <= 0 || p.isDone()) { return; } final ScheduledFuture timeoutFuture = ctx.executor().schedule(new Runnable() { @Override public void run() { if (p.isDone()) { return; } notifyHandshakeFailure(HANDSHAKE_TIMED_OUT); } }, handshakeTimeoutMillis, TimeUnit.MILLISECONDS); // Cancel the handshake timeout when handshake is finished. p.addListener(new FutureListener() { @Override public void operationComplete(Future f) throws Exception { timeoutFuture.cancel(false); } }); } private void forceFlush(ChannelHandlerContext ctx) { needsFlush = false; ctx.flush(); } /** * Issues an initial TLS handshake once connected when used in client-mode */ @Override public void channelActive(final ChannelHandlerContext ctx) throws Exception { if (!startTls && engine.getUseClientMode()) { // Begin the initial handshake handshake(null); } ctx.fireChannelActive(); } private void safeClose( final ChannelHandlerContext ctx, final ChannelFuture flushFuture, final ChannelPromise promise) { if (!ctx.channel().isActive()) { ctx.close(promise); return; } final ScheduledFuture timeoutFuture; if (!flushFuture.isDone()) { long closeNotifyTimeout = closeNotifyFlushTimeoutMillis; if (closeNotifyTimeout > 0) { // Force-close the connection if close_notify is not fully sent in time. timeoutFuture = ctx.executor().schedule(new Runnable() { @Override public void run() { // May be done in the meantime as cancel(...) is only best effort. if (!flushFuture.isDone()) { logger.warn("{} Last write attempt timed out; force-closing the connection.", ctx.channel()); addCloseListener(ctx.close(ctx.newPromise()), promise); } } }, closeNotifyTimeout, TimeUnit.MILLISECONDS); } else { timeoutFuture = null; } } else { timeoutFuture = null; } // Close the connection if close_notify is sent in time. flushFuture.addListener(new ChannelFutureListener() { @Override public void operationComplete(ChannelFuture f) throws Exception { if (timeoutFuture != null) { timeoutFuture.cancel(false); } final long closeNotifyReadTimeout = closeNotifyReadTimeoutMillis; if (closeNotifyReadTimeout <= 0) { // Trigger the close in all cases to make sure the promise is notified // See https://github.com/netty/netty/issues/2358 addCloseListener(ctx.close(ctx.newPromise()), promise); } else { final ScheduledFuture closeNotifyReadTimeoutFuture; if (!sslClosePromise.isDone()) { closeNotifyReadTimeoutFuture = ctx.executor().schedule(new Runnable() { @Override public void run() { if (!sslClosePromise.isDone()) { logger.debug( "{} did not receive close_notify in {}ms; force-closing the connection.", ctx.channel(), closeNotifyReadTimeout); // Do the close now... addCloseListener(ctx.close(ctx.newPromise()), promise); } } }, closeNotifyReadTimeout, TimeUnit.MILLISECONDS); } else { closeNotifyReadTimeoutFuture = null; } // Do the close once the we received the close_notify. sslClosePromise.addListener(new FutureListener() { @Override public void operationComplete(Future future) throws Exception { if (closeNotifyReadTimeoutFuture != null) { closeNotifyReadTimeoutFuture.cancel(false); } addCloseListener(ctx.close(ctx.newPromise()), promise); } }); } } }); } private static void addCloseListener(ChannelFuture future, ChannelPromise promise) { // We notify the promise in the ChannelPromiseNotifier as there is a "race" where the close(...) call // by the timeoutFuture and the close call in the flushFuture listener will be called. Because of // this we need to use trySuccess() and tryFailure(...) as otherwise we can cause an // IllegalStateException. // Also we not want to log if the notification happens as this is expected in some cases. // See https://github.com/netty/netty/issues/5598 future.addListener(new ChannelPromiseNotifier(false, promise)); } /** * Always prefer a direct buffer when it's pooled, so that we reduce the number of memory copies * in {@link OpenSslEngine}. */ private ByteBuf allocate(ChannelHandlerContext ctx, int capacity) { ByteBufAllocator alloc = ctx.alloc(); if (engineType.wantsDirectBuffer) { return alloc.directBuffer(capacity); } else { return alloc.buffer(capacity); } } /** * Allocates an outbound network buffer for {@link SSLEngine#wrap(ByteBuffer, ByteBuffer)} which can encrypt * the specified amount of pending bytes. */ private ByteBuf allocateOutNetBuf(ChannelHandlerContext ctx, int pendingBytes, int numComponents) { return allocate(ctx, engineType.calculateWrapBufferCapacity(this, pendingBytes, numComponents)); } /** * Each call to SSL_write will introduce about ~100 bytes of overhead. This coalescing queue attempts to increase * goodput by aggregating the plaintext in chunks of {@link #wrapDataSize}. If many small chunks are written * this can increase goodput, decrease the amount of calls to SSL_write, and decrease overall encryption operations. */ private static final class SslHandlerCoalescingBufferQueue extends AbstractCoalescingBufferQueue { volatile int wrapDataSize = MAX_PLAINTEXT_LENGTH; SslHandlerCoalescingBufferQueue(int initSize) { super(initSize); } @Override protected ByteBuf compose(ByteBufAllocator alloc, ByteBuf cumulation, ByteBuf next) { final int wrapDataSize = this.wrapDataSize; if (cumulation instanceof CompositeByteBuf) { CompositeByteBuf composite = (CompositeByteBuf) cumulation; int numComponents = composite.numComponents(); if (numComponents == 0 || !attemptCopyToCumulation(composite.internalComponent(numComponents - 1), next, wrapDataSize)) { composite.addComponent(true, next); } return composite; } if (attemptCopyToCumulation(cumulation, next, wrapDataSize)) { return cumulation; } CompositeByteBuf composite = alloc.compositeDirectBuffer(size() + 2); composite.addComponent(true, cumulation); composite.addComponent(true, next); return composite; } @Override protected ByteBuf composeFirst(ByteBufAllocator allocator, ByteBuf first) { if (first instanceof CompositeByteBuf) { CompositeByteBuf composite = (CompositeByteBuf) first; first = allocator.directBuffer(composite.readableBytes()); first.writeBytes(composite); composite.release(); } return first; } @Override protected ByteBuf removeEmptyValue() { return null; } private static boolean attemptCopyToCumulation(ByteBuf cumulation, ByteBuf next, int wrapDataSize) { final int inReadableBytes = next.readableBytes(); final int cumulationCapacity = cumulation.capacity(); if (wrapDataSize - cumulation.readableBytes() >= inReadableBytes && // Avoid using the same buffer if next's data would make cumulation exceed the wrapDataSize. // Only copy if there is enough space available and the capacity is large enough, and attempt to // resize if the capacity is small. (cumulation.isWritable(inReadableBytes) && cumulationCapacity >= wrapDataSize || cumulationCapacity < wrapDataSize && ensureWritableSuccess(cumulation.ensureWritable(inReadableBytes, false)))) { cumulation.writeBytes(next); next.release(); return true; } return false; } } private final class LazyChannelPromise extends DefaultPromise { @Override protected EventExecutor executor() { if (ctx == null) { throw new IllegalStateException(); } return ctx.executor(); } @Override protected void checkDeadLock() { if (ctx == null) { // If ctx is null the handlerAdded(...) callback was not called, in this case the checkDeadLock() // method was called from another Thread then the one that is used by ctx.executor(). We need to // guard against this as a user can see a race if handshakeFuture().sync() is called but the // handlerAdded(..) method was not yet as it is called from the EventExecutor of the // ChannelHandlerContext. If we not guard against this super.checkDeadLock() would cause an // IllegalStateException when trying to call executor(). return; } super.checkDeadLock(); } } }