com.carrotsearch.hppc.CharHashSet Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of driver-cql-shaded Show documentation
Show all versions of driver-cql-shaded Show documentation
A Shaded CQL ActivityType driver for http://nosqlbench.io/
package com.carrotsearch.hppc;
import java.util.*;
import com.carrotsearch.hppc.cursors.*;
import com.carrotsearch.hppc.predicates.*;
import com.carrotsearch.hppc.procedures.*;
import static com.carrotsearch.hppc.HashContainers.*;
import static com.carrotsearch.hppc.Containers.*;
/**
* A hash set of char
s, implemented using using open addressing
* with linear probing for collision resolution.
*
*
* Note: read about
*
* important differences between hash and scatter sets.
*
*
* @see CharScatterSet
* @see HPPC interfaces diagram
*/
@javax.annotation.Generated(
date = "2015-05-07T09:33:03+0200",
value = "KTypeHashSet.java")
public class CharHashSet
extends AbstractCharCollection
implements
CharLookupContainer,
CharSet,
Preallocable,
Cloneable {
/** The hash array holding keys. */
public char []
keys;
/**
* The number of stored keys (assigned key slots), excluding the special
* "empty" key, if any.
*
* @see #size()
* @see #hasEmptyKey
*/
protected int assigned;
/**
* Mask for slot scans in {@link #keys}.
*/
protected int mask;
/**
* We perturb hash values with a container-unique
* seed to avoid problems with nearly-sorted-by-hash
* values on iterations.
*
* @see #hashKey
* @see "http://issues.carrot2.org/browse/HPPC-80"
* @see "http://issues.carrot2.org/browse/HPPC-103"
*/
protected int keyMixer;
/**
* Expand (rehash) {@link #keys} when {@link #assigned} hits this value.
*/
protected int resizeAt;
/**
* Special treatment for the "empty slot" key marker.
*/
protected boolean hasEmptyKey;
/**
* The load factor for {@link #keys}.
*/
protected double loadFactor;
/**
* Per-instance hash order mixing strategy.
* @see #keyMixer
*/
protected HashOrderMixingStrategy orderMixer;
/**
* New instance with sane defaults.
*
* @see #CharHashSet(int, double, HashOrderMixingStrategy)
*/
public CharHashSet() {
this(DEFAULT_EXPECTED_ELEMENTS, DEFAULT_LOAD_FACTOR);
}
/**
* New instance with sane defaults.
*
* @see #CharHashSet(int, double, HashOrderMixingStrategy)
*/
public CharHashSet(int expectedElements) {
this(expectedElements, DEFAULT_LOAD_FACTOR);
}
/**
* New instance with sane defaults.
*
* @see #CharHashSet(int, double, HashOrderMixingStrategy)
*/
public CharHashSet(int expectedElements, double loadFactor) {
this(expectedElements, loadFactor, HashOrderMixing.defaultStrategy());
}
/**
* New instance with the provided defaults.
*
* @param expectedElements
* The expected number of elements guaranteed not to cause a rehash (inclusive).
* @param loadFactor
* The load factor for internal buffers. Insane load factors (zero, full capacity)
* are rejected by {@link #verifyLoadFactor(double)}.
* @param orderMixer
* Hash key order mixing strategy. See {@link HashOrderMixing} for predefined
* implementations. Use constant mixers only if you understand the potential
* consequences.
*/
public CharHashSet(int expectedElements, double loadFactor, HashOrderMixingStrategy orderMixer) {
this.orderMixer = orderMixer;
this.loadFactor = verifyLoadFactor(loadFactor);
ensureCapacity(expectedElements);
}
/**
* New instance copying elements from another {@link CharContainer}.
*/
public CharHashSet(CharContainer container) {
this(container.size());
addAll(container);
}
/**
* {@inheritDoc}
*/
@Override
public boolean add(char key) {
if (((key) == 0)) {
assert ((keys[mask + 1]) == 0);
boolean added = !hasEmptyKey;
hasEmptyKey = true;
return added;
} else {
final char [] keys = this.keys;
final int mask = this.mask;
int slot = hashKey(key) & mask;
char existing;
while (!((existing = keys[slot]) == 0)) {
if (((existing) == ( key))) {
return false;
}
slot = (slot + 1) & mask;
}
if (assigned == resizeAt) {
allocateThenInsertThenRehash(slot, key);
} else {
keys[slot] = key;
}
assigned++;
return true;
}
}
/**
* Adds all elements from the given list (vararg) to this set.
*
* @return Returns the number of elements actually added as a result of this
* call (not previously present in the set).
*/
/* */
public final int addAll(char... elements) {
ensureCapacity(elements.length);
int count = 0;
for (char e : elements) {
if (add(e)) {
count++;
}
}
return count;
}
/**
* Adds all elements from the given {@link CharContainer} to this set.
*
* @return Returns the number of elements actually added as a result of this
* call (not previously present in the set).
*/
public int addAll(CharContainer container) {
ensureCapacity(container.size());
return addAll((Iterable extends CharCursor>) container);
}
/**
* Adds all elements from the given iterable to this set.
*
* @return Returns the number of elements actually added as a result of this
* call (not previously present in the set).
*/
public int addAll(Iterable extends CharCursor> iterable) {
int count = 0;
for (CharCursor cursor : iterable) {
if (add(cursor.value)) {
count++;
}
}
return count;
}
/**
* {@inheritDoc}
*/
@Override
public char [] toArray() {
final char[] cloned = (new char [size()]);
int j = 0;
if (hasEmptyKey) {
cloned[j++] = ((char) 0);
}
final char[] keys = this.keys;
for (int slot = 0, max = mask; slot <= max; slot++) {
char existing;
if (!((existing = keys[slot]) == 0)) {
cloned[j++] = existing;
}
}
return cloned;
}
/**
* An alias for the (preferred) {@link #removeAll}.
*/
public boolean remove(char key) {
if (((key) == 0)) {
boolean hadEmptyKey = hasEmptyKey;
hasEmptyKey = false;
return hadEmptyKey;
} else {
final char [] keys = this.keys;
final int mask = this.mask;
int slot = hashKey(key) & mask;
char existing;
while (!((existing = keys[slot]) == 0)) {
if (((existing) == ( key))) {
shiftConflictingKeys(slot);
return true;
}
slot = (slot + 1) & mask;
}
return false;
}
}
/**
* {@inheritDoc}
*/
@Override
public int removeAll(char key) {
return remove(key) ? 1 : 0;
}
/**
* {@inheritDoc}
*/
@Override
public int removeAll(CharPredicate predicate) {
int before = size();
if (hasEmptyKey) {
if (predicate.apply(((char) 0))) {
hasEmptyKey = false;
}
}
final char[] keys = this.keys;
for (int slot = 0, max = this.mask; slot <= max;) {
char existing;
if (!((existing = keys[slot]) == 0)) {
if (predicate.apply(existing)) {
shiftConflictingKeys(slot);
continue; // Repeat the check for the same slot i (shifted).
}
}
slot++;
}
return before - size();
}
/**
* {@inheritDoc}
*/
@Override
public boolean contains(char key) {
if (((key) == 0)) {
return hasEmptyKey;
} else {
final char [] keys = this.keys;
final int mask = this.mask;
int slot = hashKey(key) & mask;
char existing;
while (!((existing = keys[slot]) == 0)) {
if (((existing) == ( key))) {
return true;
}
slot = (slot + 1) & mask;
}
return false;
}
}
/**
* {@inheritDoc}
*/
@Override
public void clear() {
assigned = 0;
hasEmptyKey = false;
Arrays.fill(keys, ((char) 0));
}
/**
* {@inheritDoc}
*/
@Override
public void release() {
assigned = 0;
hasEmptyKey = false;
keys = null;
ensureCapacity(Containers.DEFAULT_EXPECTED_ELEMENTS);
}
/**
* {@inheritDoc}
*/
@Override
public boolean isEmpty() {
return size() == 0;
}
/**
* Ensure this container can hold at least the
* given number of elements without resizing its buffers.
*
* @param expectedElements The total number of elements, inclusive.
*/
@Override
public void ensureCapacity(int expectedElements) {
if (expectedElements > resizeAt || keys == null) {
final char[] prevKeys = this.keys;
allocateBuffers(minBufferSize(expectedElements, loadFactor));
if (prevKeys != null && !isEmpty()) {
rehash(prevKeys);
}
}
}
/**
* {@inheritDoc}
*/
@Override
public int size() {
return assigned + (hasEmptyKey ? 1 : 0);
}
/**
* {@inheritDoc}
*/
@Override
public int hashCode() {
int h = hasEmptyKey ? 0xDEADBEEF : 0;
final char[] keys = this.keys;
for (int slot = mask; slot >= 0; slot--) {
char existing;
if (!((existing = keys[slot]) == 0)) {
h += BitMixer.mix(existing);
}
}
return h;
}
/**
* {@inheritDoc}
*/
@Override
public boolean equals(Object obj) {
return obj != null &&
getClass() == obj.getClass() &&
sameKeys(getClass().cast(obj));
}
/**
* Return true if all keys of some other container exist in this container.
*/
private boolean sameKeys(CharSet other) {
if (other.size() != size()) {
return false;
}
for (CharCursor c : other) {
if (!contains( c.value)) {
return false;
}
}
return true;
}
/**
* {@inheritDoc}
*/
@Override
public CharHashSet clone() {
try {
/* */
CharHashSet cloned = (CharHashSet) super.clone();
cloned.keys = keys.clone();
cloned.hasEmptyKey = cloned.hasEmptyKey;
cloned.orderMixer = orderMixer.clone();
return cloned;
} catch (CloneNotSupportedException e) {
throw new RuntimeException(e);
}
}
/**
* {@inheritDoc}
*/
@Override
public Iterator iterator() {
return new EntryIterator();
}
/**
* An iterator implementation for {@link #iterator}.
*/
protected final class EntryIterator extends AbstractIterator {
private final CharCursor cursor;
private final int max = mask + 1;
private int slot = -1;
public EntryIterator() {
cursor = new CharCursor();
}
@Override
protected CharCursor fetch() {
if (slot < max) {
char existing;
for (slot++; slot < max; slot++) {
if (!((existing = keys[slot]) == 0)) {
cursor.index = slot;
cursor.value = existing;
return cursor;
}
}
}
if (slot == max && hasEmptyKey) {
cursor.index = slot;
cursor.value = ((char) 0);
slot++;
return cursor;
}
return done();
}
}
/**
* {@inheritDoc}
*/
@Override
public T forEach(T procedure) {
if (hasEmptyKey) {
procedure.apply(((char) 0));
}
final char[] keys = this.keys;
for (int slot = 0, max = this.mask; slot <= max; slot++) {
char existing;
if (!((existing = keys[slot]) == 0)) {
procedure.apply(existing);
}
}
return procedure;
}
/**
* {@inheritDoc}
*/
@Override
public T forEach(T predicate) {
if (hasEmptyKey) {
if (!predicate.apply(((char) 0))) {
return predicate;
}
}
final char[] keys = this.keys;
for (int slot = 0, max = this.mask; slot <= max; slot++) {
char existing;
if (!((existing = keys[slot]) == 0)) {
if (!predicate.apply(existing)) {
break;
}
}
}
return predicate;
}
/**
* Create a set from a variable number of arguments or an array of
* char
. The elements are copied from the argument to the
* internal buffer.
*/
/* */
public static CharHashSet from(char... elements) {
final CharHashSet set = new CharHashSet(elements.length);
set.addAll(elements);
return set;
}
/**
* Returns a hash code for the given key.
*
* The default implementation mixes the hash of the key with {@link #keyMixer}
* to differentiate hash order of keys between hash containers. Helps
* alleviate problems resulting from linear conflict resolution in open
* addressing.
*
* The output from this function should evenly distribute keys across the
* entire integer range.
*/
protected
int hashKey(char key) {
assert !((key) == 0); // Handled as a special case (empty slot marker).
return BitMixer.mix(key, this.keyMixer);
}
/**
* Returns a logical "index" of a given key that can be used to speed up
* follow-up logic in certain scenarios (conditional logic).
*
* The semantics of "indexes" are not strictly defined. Indexes may
* (and typically won't be) contiguous.
*
* The index is valid only between modifications (it will not be affected
* by read-only operations).
*
* @see #indexExists
* @see #indexGet
* @see #indexInsert
* @see #indexReplace
*
* @param key
* The key to locate in the set.
* @return A non-negative value of the logical "index" of the key in the set
* or a negative value if the key did not exist.
*/
public int indexOf(char key) {
final int mask = this.mask;
if (((key) == 0)) {
return hasEmptyKey ? mask + 1 : ~(mask + 1);
} else {
final char[] keys = this.keys;
int slot = hashKey(key) & mask;
char existing;
while (!((existing = keys[slot]) == 0)) {
if (((existing) == ( key))) {
return slot;
}
slot = (slot + 1) & mask;
}
return ~slot;
}
}
/**
* @see #indexOf
*
* @param index The index of a given key, as returned from {@link #indexOf}.
* @return Returns true
if the index corresponds to an existing key
* or false otherwise. This is equivalent to checking whether the index is
* a positive value (existing keys) or a negative value (non-existing keys).
*/
public boolean indexExists(int index) {
assert index < 0 ||
(index >= 0 && index <= mask) ||
(index == mask + 1 && hasEmptyKey);
return index >= 0;
}
/**
* Returns the exact value of the existing key. This method makes sense for sets
* of objects which define custom key-equality relationship.
*
* @see #indexOf
*
* @param index The index of an existing key.
* @return Returns the equivalent key currently stored in the set.
* @throws AssertionError If assertions are enabled and the index does
* not correspond to an existing key.
*/
public char indexGet(int index) {
assert index >= 0 : "The index must point at an existing key.";
assert index <= mask ||
(index == mask + 1 && hasEmptyKey);
return keys[index];
}
/**
* Replaces the existing equivalent key with the given one and returns any previous value
* stored for that key.
*
* @see #indexOf
*
* @param index The index of an existing key.
* @param equivalentKey The key to put in the set as a replacement. Must be equivalent to
* the key currently stored at the provided index.
* @return Returns the previous key stored in the set.
* @throws AssertionError If assertions are enabled and the index does
* not correspond to an existing key.
*/
public char indexReplace(int index, char equivalentKey) {
assert index >= 0 : "The index must point at an existing key.";
assert index <= mask ||
(index == mask + 1 && hasEmptyKey);
assert ((equivalentKey) == ( keys[index]));
char previousValue = keys[index];
keys[index] = equivalentKey;
return previousValue;
}
/**
* Inserts a key for an index that is not present in the set. This method
* may help in avoiding double recalculation of the key's hash.
*
* @see #indexOf
*
* @param index The index of a previously non-existing key, as returned from
* {@link #indexOf}.
* @throws AssertionError If assertions are enabled and the index does
* not correspond to an existing key.
*/
public void indexInsert(int index, char key) {
assert index < 0 : "The index must not point at an existing key.";
index = ~index;
if (((key) == 0)) {
assert index == mask + 1;
assert ((keys[index]) == 0);
hasEmptyKey = true;
} else {
assert ((keys[index]) == 0);
if (assigned == resizeAt) {
allocateThenInsertThenRehash(index, key);
} else {
keys[index] = key;
}
assigned++;
}
}
@Override
public String visualizeKeyDistribution(int characters) {
return CharBufferVisualizer.visualizeKeyDistribution(keys, mask, characters);
}
/**
* Validate load factor range and return it. Override and suppress if you need
* insane load factors.
*/
protected double verifyLoadFactor(double loadFactor) {
checkLoadFactor(loadFactor, MIN_LOAD_FACTOR, MAX_LOAD_FACTOR);
return loadFactor;
}
/**
* Rehash from old buffers to new buffers.
*/
protected void rehash(char[] fromKeys) {
assert HashContainers.checkPowerOfTwo(fromKeys.length - 1);
// Rehash all stored keys into the new buffers.
final char[] keys = this.keys;
final int mask = this.mask;
char existing;
for (int i = fromKeys.length - 1; --i >= 0;) {
if (!((existing = fromKeys[i]) == 0)) {
int slot = hashKey(existing) & mask;
while (!((keys[slot]) == 0)) {
slot = (slot + 1) & mask;
}
keys[slot] = existing;
}
}
}
/**
* Allocate new internal buffers. This method attempts to allocate
* and assign internal buffers atomically (either allocations succeed or not).
*/
protected void allocateBuffers(int arraySize) {
assert Integer.bitCount(arraySize) == 1;
// Compute new hash mixer candidate before expanding.
final int newKeyMixer = this.orderMixer.newKeyMixer(arraySize);
// Ensure no change is done if we hit an OOM.
char[] prevKeys = this.keys;
try {
int emptyElementSlot = 1;
this.keys = (new char [arraySize + emptyElementSlot]);
} catch (OutOfMemoryError e) {
this.keys = prevKeys;
throw new BufferAllocationException(
"Not enough memory to allocate buffers for rehashing: %,d -> %,d",
e,
this.keys == null ? 0 : size(),
arraySize);
}
this.resizeAt = expandAtCount(arraySize, loadFactor);
this.keyMixer = newKeyMixer;
this.mask = arraySize - 1;
}
/**
* This method is invoked when there is a new key to be inserted into
* the buffer but there is not enough empty slots to do so.
*
* New buffers are allocated. If this succeeds, we know we can proceed
* with rehashing so we assign the pending element to the previous buffer
* (possibly violating the invariant of having at least one empty slot)
* and rehash all keys, substituting new buffers at the end.
*/
protected void allocateThenInsertThenRehash(int slot, char pendingKey) {
assert assigned == resizeAt
&& (( keys[slot]) == 0)
&& !((pendingKey) == 0);
// Try to allocate new buffers first. If we OOM, we leave in a consistent state.
final char[] prevKeys = this.keys;
allocateBuffers(nextBufferSize(mask + 1, size(), loadFactor));
assert this.keys.length > prevKeys.length;
// We have succeeded at allocating new data so insert the pending key/value at
// the free slot in the old arrays before rehashing.
prevKeys[slot] = pendingKey;
// Rehash old keys, including the pending key.
rehash(prevKeys);
}
/**
* Shift all the slot-conflicting keys allocated to (and including) slot
.
*/
protected void shiftConflictingKeys(int gapSlot) {
final char[] keys = this.keys;
final int mask = this.mask;
// Perform shifts of conflicting keys to fill in the gap.
int distance = 0;
while (true) {
final int slot = (gapSlot + (++distance)) & mask;
final char existing = keys[slot];
if (((existing) == 0)) {
break;
}
final int idealSlot = hashKey(existing);
final int shift = (slot - idealSlot) & mask;
if (shift >= distance) {
// Entry at this position was originally at or before the gap slot.
// Move the conflict-shifted entry to the gap's position and repeat the procedure
// for any entries to the right of the current position, treating it
// as the new gap.
keys[gapSlot] = existing;
gapSlot = slot;
distance = 0;
}
}
// Mark the last found gap slot without a conflict as empty.
keys[gapSlot] = ((char) 0);
assigned--;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy