com.codahale.metrics.SlidingTimeWindowMovingAverages Maven / Gradle / Ivy
Show all versions of driver-cql-shaded Show documentation
package com.codahale.metrics;
import java.time.Duration;
import java.time.Instant;
import java.util.ArrayList;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.LongAdder;
/**
* A triple of simple moving average rates (one, five and fifteen minutes rates) as needed by {@link Meter}.
*
* The averages are unweighted, i.e. they include strictly only the events in the
* sliding time window, every event having the same weight. Unlike the
* the more widely used {@link ExponentialMovingAverages} implementation,
* with this class the moving average rate drops immediately to zero if the last
* marked event is older than the time window.
*
* A {@link Meter} with {@link SlidingTimeWindowMovingAverages} works similarly to
* a {@link Histogram} with an {@link SlidingTimeWindowArrayReservoir}, but as a Meter
* needs to keep track only of the count of events (not the events itself), the memory
* overhead is much smaller. SlidingTimeWindowMovingAverages uses buckets with just one
* counter to accumulate the number of events (one bucket per seconds, giving 900 buckets
* for the 15 minutes time window).
*/
public class SlidingTimeWindowMovingAverages implements MovingAverages {
private static final long TIME_WINDOW_DURATION_MINUTES = 15;
private static final long TICK_INTERVAL = TimeUnit.SECONDS.toNanos(1);
private static final Duration TIME_WINDOW_DURATION = Duration.ofMinutes(TIME_WINDOW_DURATION_MINUTES);
// package private for the benefit of the unit test
static final int NUMBER_OF_BUCKETS = (int) (TIME_WINDOW_DURATION.toNanos() / TICK_INTERVAL);
private final AtomicLong lastTick;
private final Clock clock;
/**
* One counter per time bucket/slot (i.e. per second, see TICK_INTERVAL) for the entire
* time window (i.e. 15 minutes, see TIME_WINDOW_DURATION_MINUTES)
*/
private ArrayList buckets;
/**
* Index into buckets, pointing at the bucket containing the oldest counts
*/
private int oldestBucketIndex;
/**
* Index into buckets, pointing at the bucket with the count for the current time (tick)
*/
private int currentBucketIndex;
/**
* Instant at creation time of the time window. Used to calculate the currentBucketIndex
* for the instant of a given tick (instant modulo time window duration)
*/
private final Instant bucketBaseTime;
/**
* Instant of the bucket with index oldestBucketIndex
*/
Instant oldestBucketTime;
/**
* Creates a new {@link SlidingTimeWindowMovingAverages}.
*/
public SlidingTimeWindowMovingAverages() {
this(Clock.defaultClock());
}
/**
* Creates a new {@link SlidingTimeWindowMovingAverages}.
*
* @param clock the clock to use for the meter ticks
*/
public SlidingTimeWindowMovingAverages(Clock clock) {
this.clock = clock;
final long startTime = clock.getTick();
lastTick = new AtomicLong(startTime);
buckets = new ArrayList<>(NUMBER_OF_BUCKETS);
for (int i = 0; i < NUMBER_OF_BUCKETS; i++) {
buckets.add(new LongAdder());
}
bucketBaseTime = Instant.ofEpochSecond(0L, startTime);
oldestBucketTime = bucketBaseTime;
oldestBucketIndex = 0;
currentBucketIndex = 0;
}
@Override
public void update(long n) {
buckets.get(currentBucketIndex).add(n);
}
@Override
public void tickIfNecessary() {
final long oldTick = lastTick.get();
final long newTick = clock.getTick();
final long age = newTick - oldTick;
if (age >= TICK_INTERVAL) {
// - the newTick doesn't fall into the same slot as the oldTick anymore
// - newLastTick is the lower border time of the new currentBucketIndex slot
final long newLastTick = newTick - age % TICK_INTERVAL;
if (lastTick.compareAndSet(oldTick, newLastTick)) {
Instant currentInstant = Instant.ofEpochSecond(0L, newLastTick);
currentBucketIndex = normalizeIndex(calculateIndexOfTick(currentInstant));
cleanOldBuckets(currentInstant);
}
}
}
@Override
public double getM15Rate() {
return getMinuteRate(15);
}
@Override
public double getM5Rate() {
return getMinuteRate(5);
}
@Override
public double getM1Rate() {
return getMinuteRate(1);
}
private double getMinuteRate(int minutes) {
Instant now = Instant.ofEpochSecond(0L, lastTick.get());
return sumBuckets(now, (int) (TimeUnit.MINUTES.toNanos(minutes) / TICK_INTERVAL));
}
int calculateIndexOfTick(Instant tickTime) {
return (int) (Duration.between(bucketBaseTime, tickTime).toNanos() / TICK_INTERVAL);
}
int normalizeIndex(int index) {
int mod = index % NUMBER_OF_BUCKETS;
return mod >= 0 ? mod : mod + NUMBER_OF_BUCKETS;
}
private void cleanOldBuckets(Instant currentTick) {
int newOldestIndex;
Instant oldestStillNeededTime = currentTick.minus(TIME_WINDOW_DURATION).plusNanos(TICK_INTERVAL);
Instant youngestNotInWindow = oldestBucketTime.plus(TIME_WINDOW_DURATION);
if (oldestStillNeededTime.isAfter(youngestNotInWindow)) {
// there was no update() call for more than two whole TIME_WINDOW_DURATION
newOldestIndex = oldestBucketIndex;
oldestBucketTime = currentTick;
} else if (oldestStillNeededTime.isAfter(oldestBucketTime)) {
newOldestIndex = normalizeIndex(calculateIndexOfTick(oldestStillNeededTime));
oldestBucketTime = oldestStillNeededTime;
} else {
return;
}
cleanBucketRange(oldestBucketIndex, newOldestIndex);
oldestBucketIndex = newOldestIndex;
}
private void cleanBucketRange(int fromIndex, int toIndex) {
if (fromIndex < toIndex) {
for (int i = fromIndex; i < toIndex; i++) {
buckets.get(i).reset();
}
} else {
for (int i = fromIndex; i < NUMBER_OF_BUCKETS; i++) {
buckets.get(i).reset();
}
for (int i = 0; i < toIndex; i++) {
buckets.get(i).reset();
}
}
}
private long sumBuckets(Instant toTime, int numberOfBuckets) {
// increment toIndex to include the current bucket into the sum
int toIndex = normalizeIndex(calculateIndexOfTick(toTime) + 1);
int fromIndex = normalizeIndex(toIndex - numberOfBuckets);
LongAdder adder = new LongAdder();
if (fromIndex < toIndex) {
buckets.stream()
.skip(fromIndex)
.limit(toIndex - fromIndex)
.mapToLong(LongAdder::longValue)
.forEach(adder::add);
} else {
buckets.stream().limit(toIndex).mapToLong(LongAdder::longValue).forEach(adder::add);
buckets.stream().skip(fromIndex).mapToLong(LongAdder::longValue).forEach(adder::add);
}
long retval = adder.longValue();
return retval;
}
}