com.ibm.icu.impl.coll.CollationFastLatinBuilder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of driver-cql-shaded Show documentation
Show all versions of driver-cql-shaded Show documentation
A Shaded CQL ActivityType driver for http://nosqlbench.io/
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html#License
/*
*******************************************************************************
* Copyright (C) 2013-2015, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
* CollationFastLatinBuilder.java, ported from collationfastlatinbuilder.h/.cpp
*
* C++ version created on: 2013aug09
* created by: Markus W. Scherer
*/
package com.ibm.icu.impl.coll;
import com.ibm.icu.lang.UScript;
import com.ibm.icu.text.Collator;
import com.ibm.icu.util.CharsTrie;
final class CollationFastLatinBuilder {
// #define DEBUG_COLLATION_FAST_LATIN_BUILDER 0 // 0 or 1 or 2
/**
* Compare two signed long values as if they were unsigned.
*/
private static final int compareInt64AsUnsigned(long a, long b) {
a += 0x8000000000000000L;
b += 0x8000000000000000L;
if(a < b) {
return -1;
} else if(a > b) {
return 1;
} else {
return 0;
}
}
/**
* Like Java Collections.binarySearch(List, String, Comparator).
*
* @return the index>=0 where the item was found,
* or the index<0 for inserting the string at ~index in sorted order
*/
private static final int binarySearch(long[] list, int limit, long ce) {
if (limit == 0) { return ~0; }
int start = 0;
for (;;) {
int i = (int)(((long)start + (long)limit) / 2);
int cmp = compareInt64AsUnsigned(ce, list[i]);
if (cmp == 0) {
return i;
} else if (cmp < 0) {
if (i == start) {
return ~start; // insert ce before i
}
limit = i;
} else {
if (i == start) {
return ~(start + 1); // insert ce after i
}
start = i;
}
}
}
CollationFastLatinBuilder() {
ce0 = 0;
ce1 = 0;
contractionCEs = new UVector64();
uniqueCEs = new UVector64();
miniCEs = null;
firstDigitPrimary = 0;
firstLatinPrimary = 0;
lastLatinPrimary = 0;
firstShortPrimary = 0;
shortPrimaryOverflow = false;
headerLength = 0;
}
boolean forData(CollationData data) {
if(result.length() != 0) { // This builder is not reusable.
throw new IllegalStateException("attempt to reuse a CollationFastLatinBuilder");
}
if(!loadGroups(data)) { return false; }
// Fast handling of digits.
firstShortPrimary = firstDigitPrimary;
getCEs(data);
encodeUniqueCEs();
if(shortPrimaryOverflow) {
// Give digits long mini primaries,
// so that there are more short primaries for letters.
firstShortPrimary = firstLatinPrimary;
resetCEs();
getCEs(data);
encodeUniqueCEs();
}
// Note: If we still have a short-primary overflow but not a long-primary overflow,
// then we could calculate how many more long primaries would fit,
// and set the firstShortPrimary to that many after the current firstShortPrimary,
// and try again.
// However, this might only benefit the en_US_POSIX tailoring,
// and it is simpler to suppress building fast Latin data for it in genrb,
// or by returning false here if shortPrimaryOverflow.
boolean ok = !shortPrimaryOverflow;
if(ok) {
encodeCharCEs();
encodeContractions();
}
contractionCEs.removeAllElements(); // might reduce heap memory usage
uniqueCEs.removeAllElements();
return ok;
}
// C++ returns one combined array with the contents of the result buffer.
// Java returns two arrays (header & table) because we cannot use pointer arithmetic,
// and we do not want to index into the table with an offset.
char[] getHeader() {
char[] resultArray = new char[headerLength];
result.getChars(0, headerLength, resultArray, 0);
return resultArray;
}
char[] getTable() {
char[] resultArray = new char[result.length() - headerLength];
result.getChars(headerLength, result.length(), resultArray, 0);
return resultArray;
}
private boolean loadGroups(CollationData data) {
headerLength = 1 + NUM_SPECIAL_GROUPS;
int r0 = (CollationFastLatin.VERSION << 8) | headerLength;
result.append((char)r0);
// The first few reordering groups should be special groups
// (space, punct, ..., digit) followed by Latn, then Grek and other scripts.
for(int i = 0; i < NUM_SPECIAL_GROUPS; ++i) {
lastSpecialPrimaries[i] = data.getLastPrimaryForGroup(Collator.ReorderCodes.FIRST + i);
if(lastSpecialPrimaries[i] == 0) {
// missing data
return false;
}
result.append(0); // reserve a slot for this group
}
firstDigitPrimary = data.getFirstPrimaryForGroup(Collator.ReorderCodes.DIGIT);
firstLatinPrimary = data.getFirstPrimaryForGroup(UScript.LATIN);
lastLatinPrimary = data.getLastPrimaryForGroup(UScript.LATIN);
if(firstDigitPrimary == 0 || firstLatinPrimary == 0) {
// missing data
return false;
}
return true;
}
private boolean inSameGroup(long p, long q) {
// Both or neither need to be encoded as short primaries,
// so that we can test only one and use the same bit mask.
if(p >= firstShortPrimary) {
return q >= firstShortPrimary;
} else if(q >= firstShortPrimary) {
return false;
}
// Both or neither must be potentially-variable,
// so that we can test only one and determine if both are variable.
long lastVariablePrimary = lastSpecialPrimaries[NUM_SPECIAL_GROUPS - 1];
if(p > lastVariablePrimary) {
return q > lastVariablePrimary;
} else if(q > lastVariablePrimary) {
return false;
}
// Both will be encoded with long mini primaries.
// They must be in the same special reordering group,
// so that we can test only one and determine if both are variable.
assert(p != 0 && q != 0);
for(int i = 0;; ++i) { // will terminate
long lastPrimary = lastSpecialPrimaries[i];
if(p <= lastPrimary) {
return q <= lastPrimary;
} else if(q <= lastPrimary) {
return false;
}
}
}
private void resetCEs() {
contractionCEs.removeAllElements();
uniqueCEs.removeAllElements();
shortPrimaryOverflow = false;
result.setLength(headerLength);
}
private void getCEs(CollationData data) {
int i = 0;
for(char c = 0;; ++i, ++c) {
if(c == CollationFastLatin.LATIN_LIMIT) {
c = CollationFastLatin.PUNCT_START;
} else if(c == CollationFastLatin.PUNCT_LIMIT) {
break;
}
CollationData d;
int ce32 = data.getCE32(c);
if(ce32 == Collation.FALLBACK_CE32) {
d = data.base;
ce32 = d.getCE32(c);
} else {
d = data;
}
if(getCEsFromCE32(d, c, ce32)) {
charCEs[i][0] = ce0;
charCEs[i][1] = ce1;
addUniqueCE(ce0);
addUniqueCE(ce1);
} else {
// bail out for c
charCEs[i][0] = ce0 = Collation.NO_CE;
charCEs[i][1] = ce1 = 0;
}
if(c == 0 && !isContractionCharCE(ce0)) {
// Always map U+0000 to a contraction.
// Write a contraction list with only a default value if there is no real contraction.
assert(contractionCEs.isEmpty());
addContractionEntry(CollationFastLatin.CONTR_CHAR_MASK, ce0, ce1);
charCEs[0][0] = (Collation.NO_CE_PRIMARY << 32) | CONTRACTION_FLAG;
charCEs[0][1] = 0;
}
}
// Terminate the last contraction list.
contractionCEs.addElement(CollationFastLatin.CONTR_CHAR_MASK);
}
private boolean getCEsFromCE32(CollationData data, int c, int ce32) {
ce32 = data.getFinalCE32(ce32);
ce1 = 0;
if(Collation.isSimpleOrLongCE32(ce32)) {
ce0 = Collation.ceFromCE32(ce32);
} else {
switch(Collation.tagFromCE32(ce32)) {
case Collation.LATIN_EXPANSION_TAG:
ce0 = Collation.latinCE0FromCE32(ce32);
ce1 = Collation.latinCE1FromCE32(ce32);
break;
case Collation.EXPANSION32_TAG: {
int index = Collation.indexFromCE32(ce32);
int length = Collation.lengthFromCE32(ce32);
if(length <= 2) {
ce0 = Collation.ceFromCE32(data.ce32s[index]);
if(length == 2) {
ce1 = Collation.ceFromCE32(data.ce32s[index + 1]);
}
break;
} else {
return false;
}
}
case Collation.EXPANSION_TAG: {
int index = Collation.indexFromCE32(ce32);
int length = Collation.lengthFromCE32(ce32);
if(length <= 2) {
ce0 = data.ces[index];
if(length == 2) {
ce1 = data.ces[index + 1];
}
break;
} else {
return false;
}
}
// Note: We could support PREFIX_TAG (assert c>=0)
// by recursing on its default CE32 and checking that none of the prefixes starts
// with a fast Latin character.
// However, currently (2013) there are only the L-before-middle-dot
// prefix mappings in the Latin range, and those would be rejected anyway.
case Collation.CONTRACTION_TAG:
assert(c >= 0);
return getCEsFromContractionCE32(data, ce32);
case Collation.OFFSET_TAG:
assert(c >= 0);
ce0 = data.getCEFromOffsetCE32(c, ce32);
break;
default:
return false;
}
}
// A mapping can be completely ignorable.
if(ce0 == 0) { return ce1 == 0; }
// We do not support an ignorable ce0 unless it is completely ignorable.
long p0 = ce0 >>> 32;
if(p0 == 0) { return false; }
// We only support primaries up to the Latin script.
if(p0 > lastLatinPrimary) { return false; }
// We support non-common secondary and case weights only together with short primaries.
int lower32_0 = (int)ce0;
if(p0 < firstShortPrimary) {
int sc0 = lower32_0 & Collation.SECONDARY_AND_CASE_MASK;
if(sc0 != Collation.COMMON_SECONDARY_CE) { return false; }
}
// No below-common tertiary weights.
if((lower32_0 & Collation.ONLY_TERTIARY_MASK) < Collation.COMMON_WEIGHT16) { return false; }
if(ce1 != 0) {
// Both primaries must be in the same group,
// or both must get short mini primaries,
// or a short-primary CE is followed by a secondary CE.
// This is so that we can test the first primary and use the same mask for both,
// and determine for both whether they are variable.
long p1 = ce1 >>> 32;
if(p1 == 0 ? p0 < firstShortPrimary : !inSameGroup(p0, p1)) { return false; }
int lower32_1 = (int)ce1;
// No tertiary CEs.
if((lower32_1 >>> 16) == 0) { return false; }
// We support non-common secondary and case weights
// only for secondary CEs or together with short primaries.
if(p1 != 0 && p1 < firstShortPrimary) {
int sc1 = lower32_1 & Collation.SECONDARY_AND_CASE_MASK;
if(sc1 != Collation.COMMON_SECONDARY_CE) { return false; }
}
// No below-common tertiary weights.
if((lower32_0 & Collation.ONLY_TERTIARY_MASK) < Collation.COMMON_WEIGHT16) { return false; }
}
// No quaternary weights.
if(((ce0 | ce1) & Collation.QUATERNARY_MASK) != 0) { return false; }
return true;
}
private boolean getCEsFromContractionCE32(CollationData data, int ce32) {
int trieIndex = Collation.indexFromCE32(ce32);
ce32 = data.getCE32FromContexts(trieIndex); // Default if no suffix match.
// Since the original ce32 is not a prefix mapping,
// the default ce32 must not be another contraction.
assert(!Collation.isContractionCE32(ce32));
int contractionIndex = contractionCEs.size();
if(getCEsFromCE32(data, Collation.SENTINEL_CP, ce32)) {
addContractionEntry(CollationFastLatin.CONTR_CHAR_MASK, ce0, ce1);
} else {
// Bail out for c-without-contraction.
addContractionEntry(CollationFastLatin.CONTR_CHAR_MASK, Collation.NO_CE, 0);
}
// Handle an encodable contraction unless the next contraction is too long
// and starts with the same character.
int prevX = -1;
boolean addContraction = false;
CharsTrie.Iterator suffixes = CharsTrie.iterator(data.contexts, trieIndex + 2, 0);
while(suffixes.hasNext()) {
CharsTrie.Entry entry = suffixes.next();
CharSequence suffix = entry.chars;
int x = CollationFastLatin.getCharIndex(suffix.charAt(0));
if(x < 0) { continue; } // ignore anything but fast Latin text
if(x == prevX) {
if(addContraction) {
// Bail out for all contractions starting with this character.
addContractionEntry(x, Collation.NO_CE, 0);
addContraction = false;
}
continue;
}
if(addContraction) {
addContractionEntry(prevX, ce0, ce1);
}
ce32 = entry.value;
if(suffix.length() == 1 && getCEsFromCE32(data, Collation.SENTINEL_CP, ce32)) {
addContraction = true;
} else {
addContractionEntry(x, Collation.NO_CE, 0);
addContraction = false;
}
prevX = x;
}
if(addContraction) {
addContractionEntry(prevX, ce0, ce1);
}
// Note: There might not be any fast Latin contractions, but
// we need to enter contraction handling anyway so that we can bail out
// when there is a non-fast-Latin character following.
// For example: Danish &Y<>> 32) == Collation.NO_CE_PRIMARY) { return; }
ce &= ~(long)Collation.CASE_MASK; // blank out case bits
int i = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce);
if(i < 0) {
uniqueCEs.insertElementAt(ce, ~i);
}
}
private int getMiniCE(long ce) {
ce &= ~(long)Collation.CASE_MASK; // blank out case bits
int index = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce);
assert(index >= 0);
return miniCEs[index];
}
private void encodeUniqueCEs() {
miniCEs = new char[uniqueCEs.size()];
int group = 0;
long lastGroupPrimary = lastSpecialPrimaries[group];
// The lowest unique CE must be at least a secondary CE.
assert(((int)uniqueCEs.elementAti(0) >>> 16) != 0);
long prevPrimary = 0;
int prevSecondary = 0;
int pri = 0;
int sec = 0;
int ter = CollationFastLatin.COMMON_TER;
for(int i = 0; i < uniqueCEs.size(); ++i) {
long ce = uniqueCEs.elementAti(i);
// Note: At least one of the p/s/t weights changes from one unique CE to the next.
// (uniqueCEs does not store case bits.)
long p = ce >>> 32;
if(p != prevPrimary) {
while(p > lastGroupPrimary) {
assert(pri <= CollationFastLatin.MAX_LONG);
// Set the group's header entry to the
// last "long primary" in or before the group.
result.setCharAt(1 + group, (char)pri);
if(++group < NUM_SPECIAL_GROUPS) {
lastGroupPrimary = lastSpecialPrimaries[group];
} else {
lastGroupPrimary = 0xffffffffL;
break;
}
}
if(p < firstShortPrimary) {
if(pri == 0) {
pri = CollationFastLatin.MIN_LONG;
} else if(pri < CollationFastLatin.MAX_LONG) {
pri += CollationFastLatin.LONG_INC;
} else {
/* #if DEBUG_COLLATION_FAST_LATIN_BUILDER
printf("long-primary overflow for %08x\n", p);
#endif */
miniCEs[i] = CollationFastLatin.BAIL_OUT;
continue;
}
} else {
if(pri < CollationFastLatin.MIN_SHORT) {
pri = CollationFastLatin.MIN_SHORT;
} else if(pri < (CollationFastLatin.MAX_SHORT - CollationFastLatin.SHORT_INC)) {
// Reserve the highest primary weight for U+FFFF.
pri += CollationFastLatin.SHORT_INC;
} else {
/* #if DEBUG_COLLATION_FAST_LATIN_BUILDER
printf("short-primary overflow for %08x\n", p);
#endif */
shortPrimaryOverflow = true;
miniCEs[i] = CollationFastLatin.BAIL_OUT;
continue;
}
}
prevPrimary = p;
prevSecondary = Collation.COMMON_WEIGHT16;
sec = CollationFastLatin.COMMON_SEC;
ter = CollationFastLatin.COMMON_TER;
}
int lower32 = (int)ce;
int s = lower32 >>> 16;
if(s != prevSecondary) {
if(pri == 0) {
if(sec == 0) {
sec = CollationFastLatin.MIN_SEC_HIGH;
} else if(sec < CollationFastLatin.MAX_SEC_HIGH) {
sec += CollationFastLatin.SEC_INC;
} else {
miniCEs[i] = CollationFastLatin.BAIL_OUT;
continue;
}
prevSecondary = s;
ter = CollationFastLatin.COMMON_TER;
} else if(s < Collation.COMMON_WEIGHT16) {
if(sec == CollationFastLatin.COMMON_SEC) {
sec = CollationFastLatin.MIN_SEC_BEFORE;
} else if(sec < CollationFastLatin.MAX_SEC_BEFORE) {
sec += CollationFastLatin.SEC_INC;
} else {
miniCEs[i] = CollationFastLatin.BAIL_OUT;
continue;
}
} else if(s == Collation.COMMON_WEIGHT16) {
sec = CollationFastLatin.COMMON_SEC;
} else {
if(sec < CollationFastLatin.MIN_SEC_AFTER) {
sec = CollationFastLatin.MIN_SEC_AFTER;
} else if(sec < CollationFastLatin.MAX_SEC_AFTER) {
sec += CollationFastLatin.SEC_INC;
} else {
miniCEs[i] = CollationFastLatin.BAIL_OUT;
continue;
}
}
prevSecondary = s;
ter = CollationFastLatin.COMMON_TER;
}
assert((lower32 & Collation.CASE_MASK) == 0); // blanked out in uniqueCEs
int t = lower32 & Collation.ONLY_TERTIARY_MASK;
if(t > Collation.COMMON_WEIGHT16) {
if(ter < CollationFastLatin.MAX_TER_AFTER) {
++ter;
} else {
miniCEs[i] = CollationFastLatin.BAIL_OUT;
continue;
}
}
if(CollationFastLatin.MIN_LONG <= pri && pri <= CollationFastLatin.MAX_LONG) {
assert(sec == CollationFastLatin.COMMON_SEC);
miniCEs[i] = (char)(pri | ter);
} else {
miniCEs[i] = (char)(pri | sec | ter);
}
}
/* #if DEBUG_COLLATION_FAST_LATIN_BUILDER
printf("last mini primary: %04x\n", pri);
#endif */
/* #if DEBUG_COLLATION_FAST_LATIN_BUILDER >= 2
for(int i = 0; i < uniqueCEs.size(); ++i) {
long ce = uniqueCEs.elementAti(i);
printf("unique CE 0x%016lx -> 0x%04x\n", ce, miniCEs[i]);
}
#endif */
}
private void encodeCharCEs() {
int miniCEsStart = result.length();
for(int i = 0; i < CollationFastLatin.NUM_FAST_CHARS; ++i) {
result.append(0); // initialize to completely ignorable
}
int indexBase = result.length();
for(int i = 0; i < CollationFastLatin.NUM_FAST_CHARS; ++i) {
long ce = charCEs[i][0];
if(isContractionCharCE(ce)) { continue; } // defer contraction
int miniCE = encodeTwoCEs(ce, charCEs[i][1]);
if((miniCE >>> 16) > 0) { // if ((unsigned)miniCE > 0xffff)
// Note: There is a chance that this new expansion is the same as a previous one,
// and if so, then we could reuse the other expansion.
// However, that seems unlikely.
int expansionIndex = result.length() - indexBase;
if(expansionIndex > CollationFastLatin.INDEX_MASK) {
miniCE = CollationFastLatin.BAIL_OUT;
} else {
result.append((char)(miniCE >> 16)).append((char)miniCE);
miniCE = CollationFastLatin.EXPANSION | expansionIndex;
}
}
result.setCharAt(miniCEsStart + i, (char)miniCE);
}
}
private void encodeContractions() {
// We encode all contraction lists so that the first word of a list
// terminates the previous list, and we only need one additional terminator at the end.
int indexBase = headerLength + CollationFastLatin.NUM_FAST_CHARS;
int firstContractionIndex = result.length();
for(int i = 0; i < CollationFastLatin.NUM_FAST_CHARS; ++i) {
long ce = charCEs[i][0];
if(!isContractionCharCE(ce)) { continue; }
int contractionIndex = result.length() - indexBase;
if(contractionIndex > CollationFastLatin.INDEX_MASK) {
result.setCharAt(headerLength + i, (char) CollationFastLatin.BAIL_OUT);
continue;
}
boolean firstTriple = true;
for(int index = (int)ce & 0x7fffffff;; index += 3) {
long x = contractionCEs.elementAti(index);
if(x == CollationFastLatin.CONTR_CHAR_MASK && !firstTriple) { break; }
long cce0 = contractionCEs.elementAti(index + 1);
long cce1 = contractionCEs.elementAti(index + 2);
int miniCE = encodeTwoCEs(cce0, cce1);
if(miniCE == CollationFastLatin.BAIL_OUT) {
result.append((char)(x | (1 << CollationFastLatin.CONTR_LENGTH_SHIFT)));
} else if((miniCE >>> 16) == 0) { // if ((unsigned)miniCE <= 0xffff)
result.append((char)(x | (2 << CollationFastLatin.CONTR_LENGTH_SHIFT)));
result.append((char)miniCE);
} else {
result.append((char)(x | (3 << CollationFastLatin.CONTR_LENGTH_SHIFT)));
result.append((char)(miniCE >> 16)).append((char)miniCE);
}
firstTriple = false;
}
// Note: There is a chance that this new contraction list is the same as a previous one,
// and if so, then we could truncate the result and reuse the other list.
// However, that seems unlikely.
result.setCharAt(headerLength + i,
(char)(CollationFastLatin.CONTRACTION | contractionIndex));
}
if(result.length() > firstContractionIndex) {
// Terminate the last contraction list.
result.append((char)CollationFastLatin.CONTR_CHAR_MASK);
}
/* #if DEBUG_COLLATION_FAST_LATIN_BUILDER
printf("** fast Latin %d * 2 = %d bytes\n", result.length(), result.length() * 2);
puts(" header & below-digit groups map");
int i = 0;
for(; i < headerLength; ++i) {
printf(" %04x", result[i]);
}
printf("\n char mini CEs");
assert(CollationFastLatin.NUM_FAST_CHARS % 16 == 0);
for(; i < indexBase; i += 16) {
int c = i - headerLength;
if(c >= CollationFastLatin.LATIN_LIMIT) {
c = CollationFastLatin.PUNCT_START + c - CollationFastLatin.LATIN_LIMIT;
}
printf("\n %04x:", c);
for(int j = 0; j < 16; ++j) {
printf(" %04x", result[i + j]);
}
}
printf("\n expansions & contractions");
for(; i < result.length(); ++i) {
if((i - indexBase) % 16 == 0) { puts(""); }
printf(" %04x", result[i]);
}
puts("");
#endif */
}
private int encodeTwoCEs(long first, long second) {
if(first == 0) {
return 0; // completely ignorable
}
if(first == Collation.NO_CE) {
return CollationFastLatin.BAIL_OUT;
}
assert((first >>> 32) != Collation.NO_CE_PRIMARY);
int miniCE = getMiniCE(first);
if(miniCE == CollationFastLatin.BAIL_OUT) { return miniCE; }
if(miniCE >= CollationFastLatin.MIN_SHORT) {
// Extract & copy the case bits.
// Shift them from normal CE bits 15..14 to mini CE bits 4..3.
int c = (((int)first & Collation.CASE_MASK) >> (14 - 3));
// Only in mini CEs: Ignorable case bits = 0, lowercase = 1.
c += CollationFastLatin.LOWER_CASE;
miniCE |= c;
}
if(second == 0) { return miniCE; }
int miniCE1 = getMiniCE(second);
if(miniCE1 == CollationFastLatin.BAIL_OUT) { return miniCE1; }
int case1 = (int)second & Collation.CASE_MASK;
if(miniCE >= CollationFastLatin.MIN_SHORT &&
(miniCE & CollationFastLatin.SECONDARY_MASK) == CollationFastLatin.COMMON_SEC) {
// Try to combine the two mini CEs into one.
int sec1 = miniCE1 & CollationFastLatin.SECONDARY_MASK;
int ter1 = miniCE1 & CollationFastLatin.TERTIARY_MASK;
if(sec1 >= CollationFastLatin.MIN_SEC_HIGH && case1 == 0 &&
ter1 == CollationFastLatin.COMMON_TER) {
// sec1>=sec_high implies pri1==0.
return (miniCE & ~CollationFastLatin.SECONDARY_MASK) | sec1;
}
}
if(miniCE1 <= CollationFastLatin.SECONDARY_MASK || CollationFastLatin.MIN_SHORT <= miniCE1) {
// Secondary CE, or a CE with a short primary, copy the case bits.
case1 = (case1 >> (14 - 3)) + CollationFastLatin.LOWER_CASE;
miniCE1 |= case1;
}
return (miniCE << 16) | miniCE1;
}
private static boolean isContractionCharCE(long ce) {
return (ce >>> 32) == Collation.NO_CE_PRIMARY && ce != Collation.NO_CE;
}
// space, punct, symbol, currency (not digit)
private static final int NUM_SPECIAL_GROUPS =
Collator.ReorderCodes.CURRENCY - Collator.ReorderCodes.FIRST + 1;
private static final long CONTRACTION_FLAG = 0x80000000L;
// temporary "buffer"
private long ce0, ce1;
private long[][] charCEs = new long[CollationFastLatin.NUM_FAST_CHARS][2];
private UVector64 contractionCEs;
private UVector64 uniqueCEs;
/** One 16-bit mini CE per unique CE. */
private char[] miniCEs;
// These are constant for a given root collator.
long[] lastSpecialPrimaries = new long[NUM_SPECIAL_GROUPS];
private long firstDigitPrimary;
private long firstLatinPrimary;
private long lastLatinPrimary;
// This determines the first normal primary weight which is mapped to
// a short mini primary. It must be >=firstDigitPrimary.
private long firstShortPrimary;
private boolean shortPrimaryOverflow;
private StringBuilder result = new StringBuilder();
private int headerLength;
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy