All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.ibm.icu.impl.number.DecimalQuantity_AbstractBCD Maven / Gradle / Ivy

There is a newer version: 4.15.102
Show newest version
// © 2017 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html#License
package com.ibm.icu.impl.number;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.text.FieldPosition;

import com.ibm.icu.impl.StandardPlural;
import com.ibm.icu.impl.Utility;
import com.ibm.icu.impl.number.Modifier.Signum;
import com.ibm.icu.text.PluralRules;
import com.ibm.icu.text.PluralRules.Operand;
import com.ibm.icu.text.UFieldPosition;

/**
 * Represents numbers and digit display properties using Binary Coded Decimal (BCD).
 *
 * @implements {@link DecimalQuantity}
 */
public abstract class DecimalQuantity_AbstractBCD implements DecimalQuantity {

    /**
     * The power of ten corresponding to the least significant digit in the BCD. For example, if this
     * object represents the number "3.14", the BCD will be "0x314" and the scale will be -2.
     *
     * 

* Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of digits * after the decimal place, which is the negative of our definition of scale. */ protected int scale; /** * The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. A long * cannot represent precisions greater than 16. * *

* This value must be re-calculated whenever the value in bcd changes by using * {@link #computePrecisionAndCompact()}. */ protected int precision; /** * A bitmask of properties relating to the number represented by this object. * * @see #NEGATIVE_FLAG * @see #INFINITY_FLAG * @see #NAN_FLAG */ protected byte flags; protected static final int NEGATIVE_FLAG = 1; protected static final int INFINITY_FLAG = 2; protected static final int NAN_FLAG = 4; // The following three fields relate to the double-to-ascii fast path algorithm. // When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The // fast algorithm guarantees correctness to only the first ~12 digits of the double. The process // of rounding the number ensures that the converted digits are correct, falling back to a slow- // path algorithm if required. Therefore, if a DecimalQuantity is constructed from a double, it // is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If // you don't round, assertions will fail in certain other methods if you try calling them. /** * The original number provided by the user and which is represented in BCD. Used when we need to * re-compute the BCD for an exact double representation. */ protected double origDouble; /** * The change in magnitude relative to the original double. Used when we need to re-compute the BCD * for an exact double representation. */ protected int origDelta; /** * Whether the value in the BCD comes from the double fast path without having been rounded to ensure * correctness */ protected boolean isApproximate; // Positions to keep track of leading and trailing zeros. // lReqPos is the magnitude of the first required leading zero. // rReqPos is the magnitude of the last required trailing zero. protected int lReqPos = 0; protected int rReqPos = 0; /** * The value of the (suppressed) exponent after the number has been put into * a notation with exponents (ex: compact, scientific). */ protected int exponent = 0; @Override public void copyFrom(DecimalQuantity _other) { copyBcdFrom(_other); DecimalQuantity_AbstractBCD other = (DecimalQuantity_AbstractBCD) _other; lReqPos = other.lReqPos; rReqPos = other.rReqPos; scale = other.scale; precision = other.precision; flags = other.flags; origDouble = other.origDouble; origDelta = other.origDelta; isApproximate = other.isApproximate; exponent = other.exponent; } public DecimalQuantity_AbstractBCD clear() { lReqPos = 0; rReqPos = 0; flags = 0; setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, exponent, and BCD data return this; } @Override public void setMinInteger(int minInt) { // Validation should happen outside of DecimalQuantity, e.g., in the Rounder class. assert minInt >= 0; // Special behavior: do not set minInt to be less than what is already set. // This is so significant digits rounding can set the integer length. if (minInt < lReqPos) { minInt = lReqPos; } // Save values into internal state lReqPos = minInt; } @Override public void setMinFraction(int minFrac) { // Validation should happen outside of DecimalQuantity, e.g., in the Rounder class. assert minFrac >= 0; // Save values into internal state // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE rReqPos = -minFrac; } @Override public void applyMaxInteger(int maxInt) { // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. assert maxInt >= 0; if (precision == 0) { return; } if (maxInt <= scale) { setBcdToZero(); return; } int magnitude = getMagnitude(); if (maxInt <= magnitude) { popFromLeft(magnitude - maxInt + 1); compact(); } } @Override public long getPositionFingerprint() { long fingerprint = 0; fingerprint ^= (lReqPos << 16); fingerprint ^= ((long) rReqPos << 32); return fingerprint; } @Override public void roundToIncrement(BigDecimal roundingIncrement, MathContext mathContext) { // Do not call this method with an increment having only a 1 or a 5 digit! // Use a more efficient call to either roundToMagnitude() or roundToNickel(). // Note: The check, which is somewhat expensive, is performed in an assertion // to disable it in production. assert roundingIncrement.stripTrailingZeros().precision() != 1 || roundingIncrement.stripTrailingZeros().unscaledValue().intValue() != 5 || roundingIncrement.stripTrailingZeros().unscaledValue().intValue() != 1; BigDecimal temp = toBigDecimal(); temp = temp.divide(roundingIncrement, 0, mathContext.getRoundingMode()) .multiply(roundingIncrement) .round(mathContext); if (temp.signum() == 0) { setBcdToZero(); // keeps negative flag for -0.0 } else { setToBigDecimal(temp); } } @Override public void multiplyBy(BigDecimal multiplicand) { if (isZeroish()) { return; } BigDecimal temp = toBigDecimal(); temp = temp.multiply(multiplicand); setToBigDecimal(temp); } @Override public void negate() { flags ^= NEGATIVE_FLAG; } @Override public int getMagnitude() throws ArithmeticException { if (precision == 0) { throw new ArithmeticException("Magnitude is not well-defined for zero"); } else { return scale + precision - 1; } } @Override public void adjustMagnitude(int delta) { if (precision != 0) { scale = Utility.addExact(scale, delta); origDelta = Utility.addExact(origDelta, delta); // Make sure that precision + scale won't overflow, either Utility.addExact(scale, precision); } } @Override public int getExponent() { return exponent; } @Override public void adjustExponent(int delta) { exponent = exponent + delta; } @Override public StandardPlural getStandardPlural(PluralRules rules) { if (rules == null) { // Fail gracefully if the user didn't provide a PluralRules return StandardPlural.OTHER; } else { @SuppressWarnings("deprecation") String ruleString = rules.select(this); return StandardPlural.orOtherFromString(ruleString); } } @Override public double getPluralOperand(Operand operand) { // If this assertion fails, you need to call roundToInfinity() or some other rounding method. // See the comment at the top of this file explaining the "isApproximate" field. assert !isApproximate; switch (operand) { case i: // Invert the negative sign if necessary return isNegative() ? -toLong(true) : toLong(true); case f: return toFractionLong(true); case t: return toFractionLong(false); case v: return fractionCount(); case w: return fractionCountWithoutTrailingZeros(); case e: return getExponent(); default: return Math.abs(toDouble()); } } @Override public void populateUFieldPosition(FieldPosition fp) { if (fp instanceof UFieldPosition) { ((UFieldPosition) fp).setFractionDigits((int) getPluralOperand(Operand.v), (long) getPluralOperand(Operand.f)); } } @Override public int getUpperDisplayMagnitude() { // If this assertion fails, you need to call roundToInfinity() or some other rounding method. // See the comment at the top of this file explaining the "isApproximate" field. assert !isApproximate; int magnitude = scale + precision; int result = (lReqPos > magnitude) ? lReqPos : magnitude; return result - 1; } @Override public int getLowerDisplayMagnitude() { // If this assertion fails, you need to call roundToInfinity() or some other rounding method. // See the comment at the top of this file explaining the "isApproximate" field. assert !isApproximate; int magnitude = scale; int result = (rReqPos < magnitude) ? rReqPos : magnitude; return result; } @Override public byte getDigit(int magnitude) { // If this assertion fails, you need to call roundToInfinity() or some other rounding method. // See the comment at the top of this file explaining the "isApproximate" field. assert !isApproximate; return getDigitPos(magnitude - scale); } private int fractionCount() { return Math.max(0, -getLowerDisplayMagnitude() - exponent); } private int fractionCountWithoutTrailingZeros() { return Math.max(-scale - exponent, 0); } @Override public boolean isNegative() { return (flags & NEGATIVE_FLAG) != 0; } @Override public Signum signum() { boolean isZero = (isZeroish() && !isInfinite()); boolean isNeg = isNegative(); if (isZero && isNeg) { return Signum.NEG_ZERO; } else if (isZero) { return Signum.POS_ZERO; } else if (isNeg) { return Signum.NEG; } else { return Signum.POS; } } @Override public boolean isInfinite() { return (flags & INFINITY_FLAG) != 0; } @Override public boolean isNaN() { return (flags & NAN_FLAG) != 0; } @Override public boolean isZeroish() { return precision == 0; } public void setToInt(int n) { setBcdToZero(); flags = 0; if (n < 0) { flags |= NEGATIVE_FLAG; n = -n; } if (n != 0) { _setToInt(n); compact(); } } private void _setToInt(int n) { if (n == Integer.MIN_VALUE) { readLongToBcd(-(long) n); } else { readIntToBcd(n); } } public void setToLong(long n) { setBcdToZero(); flags = 0; if (n < 0) { flags |= NEGATIVE_FLAG; n = -n; } if (n != 0) { _setToLong(n); compact(); } } private void _setToLong(long n) { if (n == Long.MIN_VALUE) { readBigIntegerToBcd(BigInteger.valueOf(n).negate()); } else if (n <= Integer.MAX_VALUE) { readIntToBcd((int) n); } else { readLongToBcd(n); } } public void setToBigInteger(BigInteger n) { setBcdToZero(); flags = 0; if (n.signum() == -1) { flags |= NEGATIVE_FLAG; n = n.negate(); } if (n.signum() != 0) { _setToBigInteger(n); compact(); } } private void _setToBigInteger(BigInteger n) { if (n.bitLength() < 32) { readIntToBcd(n.intValue()); } else if (n.bitLength() < 64) { readLongToBcd(n.longValue()); } else { readBigIntegerToBcd(n); } } /** * Sets the internal BCD state to represent the value in the given double. * * @param n * The value to consume. */ public void setToDouble(double n) { setBcdToZero(); flags = 0; // The sign bit is the top bit in both double and long, so we can // get the long bits for the double and compare it to zero to check // the sign of the double. if (Double.doubleToRawLongBits(n) < 0) { flags |= NEGATIVE_FLAG; n = -n; } if (Double.isNaN(n)) { flags |= NAN_FLAG; } else if (Double.isInfinite(n)) { flags |= INFINITY_FLAG; } else if (n != 0) { _setToDoubleFast(n); compact(); } } private static final double[] DOUBLE_MULTIPLIERS = { 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21 }; /** * Uses double multiplication and division to get the number into integer space before converting to * digits. Since double arithmetic is inexact, the resulting digits may not be accurate. */ private void _setToDoubleFast(double n) { isApproximate = true; origDouble = n; origDelta = 0; // NOTE: Unlike ICU4C, doubles are always IEEE 754 doubles. long ieeeBits = Double.doubleToLongBits(n); int exponent = (int) ((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff; // Not all integers can be represented exactly for exponent > 52 if (exponent <= 52 && (long) n == n) { _setToLong((long) n); return; } if (exponent == -1023 || exponent == 1024) { // The extreme values of exponent are special; use slow path. convertToAccurateDouble(); return; } // 3.3219... is log2(10) int fracLength = (int) ((52 - exponent) / 3.32192809488736234787031942948939017586); if (fracLength >= 0) { int i = fracLength; // 1e22 is the largest exact double. for (; i >= 22; i -= 22) n *= 1e22; n *= DOUBLE_MULTIPLIERS[i]; } else { int i = fracLength; // 1e22 is the largest exact double. for (; i <= -22; i += 22) n /= 1e22; n /= DOUBLE_MULTIPLIERS[-i]; } long result = Math.round(n); if (result != 0) { _setToLong(result); scale -= fracLength; } } /** * Uses Double.toString() to obtain an exact accurate representation of the double, overwriting it * into the BCD. This method can be called at any point after {@link #_setToDoubleFast} while * {@link #isApproximate} is still true. */ private void convertToAccurateDouble() { double n = origDouble; assert n != 0; int delta = origDelta; setBcdToZero(); // Call the slow oracle function (Double.toString in Java, sprintf in C++). String dstr = Double.toString(n); if (dstr.indexOf('E') != -1) { // Case 1: Exponential notation. assert dstr.indexOf('.') == 1; int expPos = dstr.indexOf('E'); _setToLong(Long.parseLong(dstr.charAt(0) + dstr.substring(2, expPos))); scale += Integer.parseInt(dstr.substring(expPos + 1)) - (expPos - 1) + 1; } else if (dstr.charAt(0) == '0') { // Case 2: Fraction-only number. assert dstr.indexOf('.') == 1; _setToLong(Long.parseLong(dstr.substring(2))); scale += 2 - dstr.length(); } else if (dstr.charAt(dstr.length() - 1) == '0') { // Case 3: Integer-only number. // Note: this path should not normally happen, because integer-only numbers are captured // before the approximate double logic is performed. assert dstr.indexOf('.') == dstr.length() - 2; assert dstr.length() - 2 <= 18; _setToLong(Long.parseLong(dstr.substring(0, dstr.length() - 2))); // no need to adjust scale } else { // Case 4: Number with both a fraction and an integer. int decimalPos = dstr.indexOf('.'); _setToLong(Long.parseLong(dstr.substring(0, decimalPos) + dstr.substring(decimalPos + 1))); scale += decimalPos - dstr.length() + 1; } scale += delta; compact(); explicitExactDouble = true; } /** * Whether this {@link DecimalQuantity_DualStorageBCD} has been explicitly converted to an exact * double. true if backed by a double that was explicitly converted via convertToAccurateDouble; * false otherwise. Used for testing. * * @internal * @deprecated This API is ICU internal only. */ @Deprecated public boolean explicitExactDouble = false; /** * Sets the internal BCD state to represent the value in the given BigDecimal. * * @param n * The value to consume. */ @Override public void setToBigDecimal(BigDecimal n) { setBcdToZero(); flags = 0; if (n.signum() == -1) { flags |= NEGATIVE_FLAG; n = n.negate(); } if (n.signum() != 0) { _setToBigDecimal(n); compact(); } } private void _setToBigDecimal(BigDecimal n) { int fracLength = n.scale(); n = n.scaleByPowerOfTen(fracLength); BigInteger bi = n.toBigInteger(); _setToBigInteger(bi); scale -= fracLength; } /** * Returns a long approximating the internal BCD. A long can only represent the integral part of the * number. Note: this method incorporates the value of {@code exponent} * (for cases such as compact notation) to return the proper long value * represented by the result. * * @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error. * @return A 64-bit integer representation of the internal BCD. */ public long toLong(boolean truncateIfOverflow) { // NOTE: Call sites should be guarded by fitsInLong(), like this: // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ } // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits. assert(truncateIfOverflow || fitsInLong()); long result = 0L; int upperMagnitude = exponent + scale + precision - 1; if (truncateIfOverflow) { upperMagnitude = Math.min(upperMagnitude, 17); } for (int magnitude = upperMagnitude; magnitude >= 0; magnitude--) { result = result * 10 + getDigitPos(magnitude - scale - exponent); } if (isNegative()) { result = -result; } return result; } /** * This returns a long representing the fraction digits of the number, as required by PluralRules. * For example, if we represent the number "1.20" (including optional and required digits), then this * function returns "20" if includeTrailingZeros is true or "2" if false. * Note: this method incorporates the value of {@code exponent} * (for cases such as compact notation) to return the proper long value * represented by the result. */ public long toFractionLong(boolean includeTrailingZeros) { long result = 0L; int magnitude = -1 - exponent; int lowerMagnitude = scale; if (includeTrailingZeros) { lowerMagnitude = Math.min(lowerMagnitude, rReqPos); } // NOTE: Java has only signed longs, so we check result <= 1e17 instead of 1e18 for (; magnitude >= lowerMagnitude && result <= 1e17; magnitude--) { result = result * 10 + getDigitPos(magnitude - scale); } // Remove trailing zeros; this can happen during integer overflow cases. if (!includeTrailingZeros) { while (result > 0 && (result % 10) == 0) { result /= 10; } } return result; } static final byte[] INT64_BCD = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 }; /** * Returns whether or not a Long can fully represent the value stored in this DecimalQuantity. */ public boolean fitsInLong() { if (isInfinite() || isNaN()) { return false; } if (isZeroish()) { return true; } if (exponent + scale < 0) { return false; } int magnitude = getMagnitude(); if (magnitude < 18) { return true; } if (magnitude > 18) { return false; } // Hard case: the magnitude is 10^18. // The largest int64 is: 9,223,372,036,854,775,807 for (int p = 0; p < precision; p++) { byte digit = getDigit(18 - p); if (digit < INT64_BCD[p]) { return true; } else if (digit > INT64_BCD[p]) { return false; } } // Exactly equal to max long plus one. return isNegative(); } /** * Returns a double approximating the internal BCD. The double may not retain all of the information * encoded in the BCD if the BCD represents a number out of range of a double. * * @return A double representation of the internal BCD. */ @Override public double toDouble() { // If this assertion fails, you need to call roundToInfinity() or some other rounding method. // See the comment at the top of this file explaining the "isApproximate" field. assert !isApproximate; if (isNaN()) { return Double.NaN; } else if (isInfinite()) { return isNegative() ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; } StringBuilder sb = new StringBuilder(); toScientificString(sb); return Double.valueOf(sb.toString()); } @Override public BigDecimal toBigDecimal() { if (isApproximate) { // Converting to a BigDecimal requires Double.toString(). convertToAccurateDouble(); } return bcdToBigDecimal(); } private static int safeSubtract(int a, int b) { int diff = a - b; if (b < 0 && diff < a) return Integer.MAX_VALUE; if (b > 0 && diff > a) return Integer.MIN_VALUE; return diff; } private static final int SECTION_LOWER_EDGE = -1; private static final int SECTION_UPPER_EDGE = -2; /** Removes all fraction digits. */ public void truncate() { if (scale < 0) { shiftRight(-scale); scale = 0; compact(); } } @Override public void roundToNickel(int magnitude, MathContext mathContext) { roundToMagnitude(magnitude, mathContext, true); } @Override public void roundToMagnitude(int magnitude, MathContext mathContext) { roundToMagnitude(magnitude, mathContext, false); } private void roundToMagnitude(int magnitude, MathContext mathContext, boolean nickel) { // The position in the BCD at which rounding will be performed; digits to the right of position // will be rounded away. int position = safeSubtract(magnitude, scale); // Enforce the number of digits required by the MathContext. int _mcPrecision = mathContext.getPrecision(); if (_mcPrecision > 0 && precision - _mcPrecision > position) { position = precision - _mcPrecision; } // "trailing" = least significant digit to the left of rounding byte trailingDigit = getDigitPos(position); if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { // All digits are to the left of the rounding magnitude. } else if (precision == 0) { // No rounding for zero. } else { // Perform rounding logic. // "leading" = most significant digit to the right of rounding byte leadingDigit = getDigitPos(safeSubtract(position, 1)); // Compute which section of the number we are in. // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles) // LOWER means we are between the bottom edge and the midpoint, like 1.391 // MIDPOINT means we are exactly in the middle, like 1.500 // UPPER means we are between the midpoint and the top edge, like 1.916 int section; if (!isApproximate) { if (nickel && trailingDigit != 2 && trailingDigit != 7) { // Nickel rounding, and not at .02x or .07x if (trailingDigit < 2) { // .00, .01 => down to .00 section = RoundingUtils.SECTION_LOWER; } else if (trailingDigit < 5) { // .03, .04 => up to .05 section = RoundingUtils.SECTION_UPPER; } else if (trailingDigit < 7) { // .05, .06 => down to .05 section = RoundingUtils.SECTION_LOWER; } else { // .08, .09 => up to .10 section = RoundingUtils.SECTION_UPPER; } } else if (leadingDigit < 5) { // Includes nickel rounding .020-.024 and .070-.074 section = RoundingUtils.SECTION_LOWER; } else if (leadingDigit > 5) { // Includes nickel rounding .026-.029 and .076-.079 section = RoundingUtils.SECTION_UPPER; } else { // Includes nickel rounding .025 and .075 section = RoundingUtils.SECTION_MIDPOINT; for (int p = safeSubtract(position, 2); p >= 0; p--) { if (getDigitPos(p) != 0) { section = RoundingUtils.SECTION_UPPER; break; } } } } else { int p = safeSubtract(position, 2); int minP = Math.max(0, precision - 14); if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { section = SECTION_LOWER_EDGE; for (; p >= minP; p--) { if (getDigitPos(p) != 0) { section = RoundingUtils.SECTION_LOWER; break; } } } else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { section = RoundingUtils.SECTION_MIDPOINT; for (; p >= minP; p--) { if (getDigitPos(p) != 9) { section = RoundingUtils.SECTION_LOWER; break; } } } else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { section = RoundingUtils.SECTION_MIDPOINT; for (; p >= minP; p--) { if (getDigitPos(p) != 0) { section = RoundingUtils.SECTION_UPPER; break; } } } else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) { section = SECTION_UPPER_EDGE; for (; p >= minP; p--) { if (getDigitPos(p) != 9) { section = RoundingUtils.SECTION_UPPER; break; } } } else if (nickel && trailingDigit != 2 && trailingDigit != 7) { // Nickel rounding, and not at .02x or .07x if (trailingDigit < 2) { // .00, .01 => down to .00 section = RoundingUtils.SECTION_LOWER; } else if (trailingDigit < 5) { // .03, .04 => up to .05 section = RoundingUtils.SECTION_UPPER; } else if (trailingDigit < 7) { // .05, .06 => down to .05 section = RoundingUtils.SECTION_LOWER; } else { // .08, .09 => up to .10 section = RoundingUtils.SECTION_UPPER; } } else if (leadingDigit < 5) { // Includes nickel rounding .020-.024 and .070-.074 section = RoundingUtils.SECTION_LOWER; } else { // Includes nickel rounding .026-.029 and .076-.079 section = RoundingUtils.SECTION_UPPER; } boolean roundsAtMidpoint = RoundingUtils .roundsAtMidpoint(mathContext.getRoundingMode().ordinal()); if (safeSubtract(position, 1) < precision - 14 || (roundsAtMidpoint && section == RoundingUtils.SECTION_MIDPOINT) || (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) { // Oops! This means that we have to get the exact representation of the double, // because the zone of uncertainty is along the rounding boundary. convertToAccurateDouble(); roundToMagnitude(magnitude, mathContext, nickel); // start over return; } // Turn off the approximate double flag, since the value is now confirmed to be exact. isApproximate = false; origDouble = 0.0; origDelta = 0; if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { // All digits are to the left of the rounding magnitude. return; } // Good to continue rounding. if (section == SECTION_LOWER_EDGE) section = RoundingUtils.SECTION_LOWER; if (section == SECTION_UPPER_EDGE) section = RoundingUtils.SECTION_UPPER; } // Nickel rounding "half even" goes to the nearest whole (away from the 5). boolean isEven = nickel ? (trailingDigit < 2 || trailingDigit > 7 || (trailingDigit == 2 && section != RoundingUtils.SECTION_UPPER) || (trailingDigit == 7 && section == RoundingUtils.SECTION_UPPER)) : (trailingDigit % 2) == 0; boolean roundDown = RoundingUtils.getRoundingDirection(isEven, isNegative(), section, mathContext.getRoundingMode().ordinal(), this); // Perform truncation if (position >= precision) { setBcdToZero(); scale = magnitude; } else { shiftRight(position); } if (nickel) { if (trailingDigit < 5 && roundDown) { setDigitPos(0, (byte) 0); compact(); return; } else if (trailingDigit >= 5 && !roundDown) { setDigitPos(0, (byte) 9); trailingDigit = 9; // do not return: use the bubbling logic below } else { setDigitPos(0, (byte) 5); // compact not necessary: digit at position 0 is nonzero return; } } // Bubble the result to the higher digits if (!roundDown) { if (trailingDigit == 9) { int bubblePos = 0; // Note: in the long implementation, the most digits BCD can have at this point is // 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe. for (; getDigitPos(bubblePos) == 9; bubblePos++) { } shiftRight(bubblePos); // shift off the trailing 9s } byte digit0 = getDigitPos(0); assert digit0 != 9; setDigitPos(0, (byte) (digit0 + 1)); precision += 1; // in case an extra digit got added } compact(); } } @Override public void roundToInfinity() { if (isApproximate) { convertToAccurateDouble(); } } /** * Appends a digit, optionally with one or more leading zeros, to the end of the value represented by * this DecimalQuantity. * *

* The primary use of this method is to construct numbers during a parsing loop. It allows parsing to * take advantage of the digit list infrastructure primarily designed for formatting. * * @param value * The digit to append. * @param leadingZeros * The number of zeros to append before the digit. For example, if the value in this * instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes * 12.304. * @param appendAsInteger * If true, increase the magnitude of existing digits to make room for the new digit. If * false, append to the end like a fraction digit. If true, there must not be any fraction * digits already in the number. * @internal * @deprecated This API is ICU internal only. */ @Deprecated public void appendDigit(byte value, int leadingZeros, boolean appendAsInteger) { assert leadingZeros >= 0; // Zero requires special handling to maintain the invariant that the least-significant digit // in the BCD is nonzero. if (value == 0) { if (appendAsInteger && precision != 0) { scale += leadingZeros + 1; } return; } // Deal with trailing zeros if (scale > 0) { leadingZeros += scale; if (appendAsInteger) { scale = 0; } } // Append digit shiftLeft(leadingZeros + 1); setDigitPos(0, value); // Fix scale if in integer mode if (appendAsInteger) { scale += leadingZeros + 1; } } @Override public String toPlainString() { StringBuilder sb = new StringBuilder(); toPlainString(sb); return sb.toString(); } public void toPlainString(StringBuilder result) { assert(!isApproximate); if (isNegative()) { result.append('-'); } if (precision == 0) { result.append('0'); return; } int upper = scale + precision + exponent - 1; int lower = scale + exponent; if (upper < lReqPos - 1) { upper = lReqPos - 1; } if (lower > rReqPos) { lower = rReqPos; } int p = upper; if (p < 0) { result.append('0'); } for (; p >= 0; p--) { result.append((char) ('0' + getDigitPos(p - scale - exponent))); } if (lower < 0) { result.append('.'); } for(; p >= lower; p--) { result.append((char) ('0' + getDigitPos(p - scale - exponent))); } } public String toScientificString() { StringBuilder sb = new StringBuilder(); toScientificString(sb); return sb.toString(); } public void toScientificString(StringBuilder result) { assert(!isApproximate); if (isNegative()) { result.append('-'); } if (precision == 0) { result.append("0E+0"); return; } // NOTE: It is not safe to add to lOptPos (aka maxInt) or subtract from // rOptPos (aka -maxFrac) due to overflow. int upperPos = precision - 1; int lowerPos = 0; int p = upperPos; result.append((char) ('0' + getDigitPos(p))); if ((--p) >= lowerPos) { result.append('.'); for (; p >= lowerPos; p--) { result.append((char) ('0' + getDigitPos(p))); } } result.append('E'); int _scale = upperPos + scale + exponent; if (_scale == Integer.MIN_VALUE) { result.append("-2147483648"); return; } else if (_scale < 0) { _scale *= -1; result.append('-'); } else { result.append('+'); } if (_scale == 0) { result.append('0'); } int insertIndex = result.length(); while (_scale > 0) { int quot = _scale / 10; int rem = _scale % 10; result.insert(insertIndex, (char) ('0' + rem)); _scale = quot; } } @Override public boolean equals(Object other) { if (this == other) { return true; } if (other == null) { return false; } if (!(other instanceof DecimalQuantity_AbstractBCD)) { return false; } DecimalQuantity_AbstractBCD _other = (DecimalQuantity_AbstractBCD) other; boolean basicEquals = scale == _other.scale && precision == _other.precision && flags == _other.flags && lReqPos == _other.lReqPos && rReqPos == _other.rReqPos && isApproximate == _other.isApproximate; if (!basicEquals) { return false; } if (precision == 0) { return true; } else if (isApproximate) { return origDouble == _other.origDouble && origDelta == _other.origDelta; } else { for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) { if (getDigit(m) != _other.getDigit(m)) { return false; } } return true; } } /** * Returns a single digit from the BCD list. No internal state is changed by calling this method. * * @param position * The position of the digit to pop, counted in BCD units from the least significant * digit. If outside the range supported by the implementation, zero is returned. * @return The digit at the specified location. */ protected abstract byte getDigitPos(int position); /** * Sets the digit in the BCD list. This method only sets the digit; it is the caller's responsibility * to call {@link #compact} after setting the digit. * * @param position * The position of the digit to pop, counted in BCD units from the least significant * digit. If outside the range supported by the implementation, an AssertionError is * thrown. * @param value * The digit to set at the specified location. */ protected abstract void setDigitPos(int position, byte value); /** * Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is * the caller's responsibility to do further manipulation and then call {@link #compact}. * * @param numDigits * The number of zeros to add. */ protected abstract void shiftLeft(int numDigits); /** * Removes digits from the end of the BCD list. This may result in an invalid BCD representation; it * is the caller's responsibility to follow-up with a call to {@link #compact}. * * @param numDigits * The number of digits to remove. */ protected abstract void shiftRight(int numDigits); /** * Directly removes digits from the front of the BCD list. * Updates precision. * * CAUTION: it is the caller's responsibility to call {@link #compact} after this method. */ protected abstract void popFromLeft(int numDigits); /** * Sets the internal representation to zero. Clears any values stored in scale, precision, hasDouble, * origDouble, origDelta, exponent, and BCD data. */ protected abstract void setBcdToZero(); /** * Sets the internal BCD state to represent the value in the given int. The int is guaranteed to be * either positive. The internal state is guaranteed to be empty when this method is called. * * @param n * The value to consume. */ protected abstract void readIntToBcd(int input); /** * Sets the internal BCD state to represent the value in the given long. The long is guaranteed to be * either positive. The internal state is guaranteed to be empty when this method is called. * * @param n * The value to consume. */ protected abstract void readLongToBcd(long input); /** * Sets the internal BCD state to represent the value in the given BigInteger. The BigInteger is * guaranteed to be positive, and it is guaranteed to be larger than Long.MAX_VALUE. The internal * state is guaranteed to be empty when this method is called. * * @param n * The value to consume. */ protected abstract void readBigIntegerToBcd(BigInteger input); /** * Returns a BigDecimal encoding the internal BCD value. * * @return A BigDecimal representation of the internal BCD. */ protected abstract BigDecimal bcdToBigDecimal(); protected abstract void copyBcdFrom(DecimalQuantity _other); /** * Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the * precision. The precision is the number of digits in the number up through the greatest nonzero * digit. * *

* This method must always be called when bcd changes in order for assumptions to be correct in * methods like {@link #fractionCount()}. */ protected abstract void compact(); }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy