All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.HdrHistogram.AbstractHistogram Maven / Gradle / Ivy

There is a newer version: 4.15.102
Show newest version
/*
 * Written by Gil Tene of Azul Systems, and released to the public domain,
 * as explained at http://creativecommons.org/publicdomain/zero/1.0/
 *
 * @author Gil Tene
 */

package org.HdrHistogram;

import java.io.*;
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
import java.nio.ByteBuffer;
import java.util.Iterator;
import java.util.Locale;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.AtomicLongFieldUpdater;
import java.util.zip.DataFormatException;
import java.util.zip.Deflater;
import java.util.zip.Inflater;

import static java.nio.ByteOrder.BIG_ENDIAN;

/**
 * This non-public AbstractHistogramBase super-class separation is meant to bunch "cold" fields
 * separately from "hot" fields, in an attempt to force the JVM to place the (hot) fields
 * commonly used in the value recording code paths close together.
 * Subclass boundaries tend to be strongly control memory layout decisions in most practical
 * JVM implementations, making this an effective method for control filed grouping layout.
 */

abstract class AbstractHistogramBase extends EncodableHistogram {
    static AtomicLong constructionIdentityCount = new AtomicLong(0);

    // "Cold" accessed fields. Not used in the recording code path:
    long identity;
    volatile boolean autoResize = false;

    long highestTrackableValue;
    long lowestDiscernibleValue;
    int numberOfSignificantValueDigits;

    int bucketCount;
    /**
     * Power-of-two length of linearly scaled array slots in the counts array. Long enough to hold the first sequence of
     * entries that must be distinguished by a single unit (determined by configured precision).
     */
    int subBucketCount;
    int countsArrayLength;
    int wordSizeInBytes;

    long startTimeStampMsec = Long.MAX_VALUE;
    long endTimeStampMsec = 0;
    String tag = null;

    double integerToDoubleValueConversionRatio = 1.0;
    double doubleToIntegerValueConversionRatio = 1.0;

    PercentileIterator percentileIterator;
    RecordedValuesIterator recordedValuesIterator;

    ByteBuffer intermediateUncompressedByteBuffer = null;
    byte[] intermediateUncompressedByteArray = null;

    double getIntegerToDoubleValueConversionRatio() {
        return integerToDoubleValueConversionRatio;
    }

    double getDoubleToIntegerValueConversionRatio() {
        return doubleToIntegerValueConversionRatio;
    }

    void nonConcurrentSetIntegerToDoubleValueConversionRatio(double integerToDoubleValueConversionRatio) {
        this.integerToDoubleValueConversionRatio = integerToDoubleValueConversionRatio;
        this.doubleToIntegerValueConversionRatio = 1.0/integerToDoubleValueConversionRatio;
    }

    abstract void setIntegerToDoubleValueConversionRatio(double integerToDoubleValueConversionRatio);
}

/**
 * 

An abstract base class for integer values High Dynamic Range (HDR) Histograms

*

* AbstractHistogram supports the recording and analyzing sampled data value counts across a configurable integer value * range with configurable value precision within the range. Value precision is expressed as the number of significant * digits in the value recording, and provides control over value quantization behavior across the value range and the * subsequent value resolution at any given level. *

* For example, a Histogram could be configured to track the counts of observed integer values between 0 and * 3,600,000,000 while maintaining a value precision of 3 significant digits across that range. Value quantization * within the range will thus be no larger than 1/1,000th (or 0.1%) of any value. This example Histogram could * be used to track and analyze the counts of observed response times ranging between 1 microsecond and 1 hour * in magnitude, while maintaining a value resolution of 1 microsecond up to 1 millisecond, a resolution of * 1 millisecond (or better) up to one second, and a resolution of 1 second (or better) up to 1,000 seconds. At it's * maximum tracked value (1 hour), it would still maintain a resolution of 3.6 seconds (or better). *

* See package description for {@link org.HdrHistogram} for details. * */ public abstract class AbstractHistogram extends AbstractHistogramBase implements ValueRecorder, Serializable { // "Hot" accessed fields (used in the the value recording code path) are bunched here, such // that they will have a good chance of ending up in the same cache line as the totalCounts and // counts array reference fields that subclass implementations will typically add. /** * Number of leading zeros in the largest value that can fit in bucket 0. */ int leadingZeroCountBase; int subBucketHalfCountMagnitude; /** * Largest k such that 2^k <= lowestDiscernibleValue */ int unitMagnitude; int subBucketHalfCount; /** * Biggest value that can fit in bucket 0 */ long subBucketMask; /** * Lowest unitMagnitude bits are set */ long unitMagnitudeMask; volatile long maxValue = 0; volatile long minNonZeroValue = Long.MAX_VALUE; private static final AtomicLongFieldUpdater maxValueUpdater = AtomicLongFieldUpdater.newUpdater(AbstractHistogram.class, "maxValue"); private static final AtomicLongFieldUpdater minNonZeroValueUpdater = AtomicLongFieldUpdater.newUpdater(AbstractHistogram.class, "minNonZeroValue"); // Sub-classes will typically add a totalCount field and a counts array field, which will likely be laid out // right around here due to the subclass layout rules in most practical JVM implementations. // // // // Abstract, counts-type dependent methods to be provided by subclass implementations: // // // abstract long getCountAtIndex(int index); abstract long getCountAtNormalizedIndex(int index); abstract void incrementCountAtIndex(int index); abstract void addToCountAtIndex(int index, long value); abstract void setCountAtIndex(int index, long value); abstract void setCountAtNormalizedIndex(int index, long value); abstract int getNormalizingIndexOffset(); abstract void setNormalizingIndexOffset(int normalizingIndexOffset); abstract void shiftNormalizingIndexByOffset(int offsetToAdd, boolean lowestHalfBucketPopulated, double newIntegerToDoubleValueConversionRatio); abstract void setTotalCount(long totalCount); abstract void incrementTotalCount(); abstract void addToTotalCount(long value); abstract void clearCounts(); abstract int _getEstimatedFootprintInBytes(); abstract void resize(long newHighestTrackableValue); /** * Get the total count of all recorded values in the histogram * @return the total count of all recorded values in the histogram */ abstract public long getTotalCount(); /** * Set internally tracked maxValue to new value if new value is greater than current one. * May be overridden by subclasses for synchronization or atomicity purposes. * @param value new maxValue to set */ private void updatedMaxValue(final long value) { final long internalValue = value | unitMagnitudeMask; // Max unit-equivalent value long sampledMaxValue; while (internalValue > (sampledMaxValue = maxValue)) { maxValueUpdater.compareAndSet(this, sampledMaxValue, internalValue); } } private void resetMaxValue(final long maxValue) { this.maxValue = maxValue | unitMagnitudeMask; // Max unit-equivalent value } /** * Set internally tracked minNonZeroValue to new value if new value is smaller than current one. * May be overridden by subclasses for synchronization or atomicity purposes. * @param value new minNonZeroValue to set */ private void updateMinNonZeroValue(final long value) { if (value <= unitMagnitudeMask) { return; // Unit-equivalent to 0. } final long internalValue = value & ~unitMagnitudeMask; // Min unit-equivalent value long sampledMinNonZeroValue; while (internalValue < (sampledMinNonZeroValue = minNonZeroValue)) { minNonZeroValueUpdater.compareAndSet(this, sampledMinNonZeroValue, internalValue); } } private void resetMinNonZeroValue(final long minNonZeroValue) { final long internalValue = minNonZeroValue & ~unitMagnitudeMask; // Min unit-equivalent value this.minNonZeroValue = (minNonZeroValue == Long.MAX_VALUE) ? minNonZeroValue : internalValue; } // // // // Construction: // // // /** * Construct an auto-resizing histogram with a lowest discernible value of 1 and an auto-adjusting * highestTrackableValue. Can auto-resize up to track values up to (Long.MAX_VALUE / 2). * * @param numberOfSignificantValueDigits The number of significant decimal digits to which the histogram will * maintain value resolution and separation. Must be a non-negative * integer between 0 and 5. */ protected AbstractHistogram(final int numberOfSignificantValueDigits) { this(1, 2, numberOfSignificantValueDigits); autoResize = true; } /** * Construct a histogram given the Lowest and Highest values to be tracked and a number of significant * decimal digits. Providing a lowestDiscernibleValue is useful is situations where the units used * for the histogram's values are much smaller that the minimal accuracy required. E.g. when tracking * time values stated in nanosecond units, where the minimal accuracy required is a microsecond, the * proper value for lowestDiscernibleValue would be 1000. * * @param lowestDiscernibleValue The lowest value that can be discerned (distinguished from 0) by the histogram. * Must be a positive integer that is {@literal >=} 1. May be internally rounded * down to nearest power of 2. * @param highestTrackableValue The highest value to be tracked by the histogram. Must be a positive * integer that is {@literal >=} (2 * lowestDiscernibleValue). * @param numberOfSignificantValueDigits The number of significant decimal digits to which the histogram will * maintain value resolution and separation. Must be a non-negative * integer between 0 and 5. */ protected AbstractHistogram(final long lowestDiscernibleValue, final long highestTrackableValue, final int numberOfSignificantValueDigits) { // Verify argument validity if (lowestDiscernibleValue < 1) { throw new IllegalArgumentException("lowestDiscernibleValue must be >= 1"); } if (lowestDiscernibleValue > Long.MAX_VALUE / 2) { // prevent subsequent multiplication by 2 for highestTrackableValue check from overflowing throw new IllegalArgumentException("lowestDiscernibleValue must be <= Long.MAX_VALUE / 2"); } if (highestTrackableValue < 2L * lowestDiscernibleValue) { throw new IllegalArgumentException("highestTrackableValue must be >= 2 * lowestDiscernibleValue"); } if ((numberOfSignificantValueDigits < 0) || (numberOfSignificantValueDigits > 5)) { throw new IllegalArgumentException("numberOfSignificantValueDigits must be between 0 and 5"); } identity = constructionIdentityCount.getAndIncrement(); init(lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits, 1.0, 0); } /** * Construct a histogram with the same range settings as a given source histogram, * duplicating the source's start/end timestamps (but NOT it's contents) * @param source The source histogram to duplicate */ protected AbstractHistogram(final AbstractHistogram source) { this(source.getLowestDiscernibleValue(), source.getHighestTrackableValue(), source.getNumberOfSignificantValueDigits()); this.setStartTimeStamp(source.getStartTimeStamp()); this.setEndTimeStamp(source.getEndTimeStamp()); this.autoResize = source.autoResize; } @SuppressWarnings("deprecation") private void init(final long lowestDiscernibleValue, final long highestTrackableValue, final int numberOfSignificantValueDigits, final double integerToDoubleValueConversionRatio, final int normalizingIndexOffset) { this.lowestDiscernibleValue = lowestDiscernibleValue; this.highestTrackableValue = highestTrackableValue; this.numberOfSignificantValueDigits = numberOfSignificantValueDigits; this.integerToDoubleValueConversionRatio = integerToDoubleValueConversionRatio; if (normalizingIndexOffset != 0) { setNormalizingIndexOffset(normalizingIndexOffset); } /* * Given a 3 decimal point accuracy, the expectation is obviously for "+/- 1 unit at 1000". It also means that * it's "ok to be +/- 2 units at 2000". The "tricky" thing is that it is NOT ok to be +/- 2 units at 1999. Only * starting at 2000. So internally, we need to maintain single unit resolution to 2x 10^decimalPoints. */ final long largestValueWithSingleUnitResolution = 2 * (long) Math.pow(10, numberOfSignificantValueDigits); unitMagnitude = (int) (Math.log(lowestDiscernibleValue)/Math.log(2)); unitMagnitudeMask = (1 << unitMagnitude) - 1; // We need to maintain power-of-two subBucketCount (for clean direct indexing) that is large enough to // provide unit resolution to at least largestValueWithSingleUnitResolution. So figure out // largestValueWithSingleUnitResolution's nearest power-of-two (rounded up), and use that: int subBucketCountMagnitude = (int) Math.ceil(Math.log(largestValueWithSingleUnitResolution)/Math.log(2)); subBucketHalfCountMagnitude = subBucketCountMagnitude - 1; subBucketCount = 1 << subBucketCountMagnitude; subBucketHalfCount = subBucketCount / 2; subBucketMask = ((long)subBucketCount - 1) << unitMagnitude; if (subBucketCountMagnitude + unitMagnitude > 62) { // subBucketCount entries can't be represented, with unitMagnitude applied, in a positive long. // Technically it still sort of works if their sum is 63: you can represent all but the last number // in the shifted subBucketCount. However, the utility of such a histogram vs ones whose magnitude here // fits in 62 bits is debatable, and it makes it harder to work through the logic. // Sums larger than 64 are totally broken as leadingZeroCountBase would go negative. throw new IllegalArgumentException("Cannot represent numberOfSignificantValueDigits worth of values " + "beyond lowestDiscernibleValue"); } // determine exponent range needed to support the trackable value with no overflow: establishSize(highestTrackableValue); // Establish leadingZeroCountBase, used in getBucketIndex() fast path: // subtract the bits that would be used by the largest value in bucket 0. leadingZeroCountBase = 64 - unitMagnitude - subBucketCountMagnitude; percentileIterator = new PercentileIterator(this, 1); recordedValuesIterator = new RecordedValuesIterator(this); } /** * The buckets (each of which has subBucketCount sub-buckets, here assumed to be 2048 as an example) overlap: * *

     * The 0'th bucket covers from 0...2047 in multiples of 1, using all 2048 sub-buckets
     * The 1'th bucket covers from 2048..4097 in multiples of 2, using only the top 1024 sub-buckets
     * The 2'th bucket covers from 4096..8191 in multiple of 4, using only the top 1024 sub-buckets
     * ...
     * 
* * Bucket 0 is "special" here. It is the only one that has 2048 entries. All the rest have 1024 entries (because * their bottom half overlaps with and is already covered by the all of the previous buckets put together). In other * words, the k'th bucket could represent 0 * 2^k to 2048 * 2^k in 2048 buckets with 2^k precision, but the midpoint * of 1024 * 2^k = 2048 * 2^(k-1) = the k-1'th bucket's end, so we would use the previous bucket for those lower * values as it has better precision. */ final void establishSize(long newHighestTrackableValue) { // establish counts array length: countsArrayLength = determineArrayLengthNeeded(newHighestTrackableValue); // establish exponent range needed to support the trackable value with no overflow: bucketCount = getBucketsNeededToCoverValue(newHighestTrackableValue); // establish the new highest trackable value: highestTrackableValue = newHighestTrackableValue; } final int determineArrayLengthNeeded(long highestTrackableValue) { if (highestTrackableValue < 2L * lowestDiscernibleValue) { throw new IllegalArgumentException("highestTrackableValue (" + highestTrackableValue + ") cannot be < (2 * lowestDiscernibleValue)"); } //determine counts array length needed: int countsArrayLength = getLengthForNumberOfBuckets(getBucketsNeededToCoverValue(highestTrackableValue)); return countsArrayLength; } // // // Auto-resizing control: // // /** * Indicate whether or not the histogram is set to auto-resize and auto-adjust it's * highestTrackableValue * @return autoResize setting */ public boolean isAutoResize() { return autoResize; } /** * Indicate whether or not the histogram is capable of supporting auto-resize functionality. * Note that this is an indication that enabling auto-resize by calling setAutoResize() is allowed, * and NOT that the histogram will actually auto-resize. Use isAutoResize() to determine if * the histogram is in auto-resize mode. * @return autoResize setting */ public boolean supportsAutoResize() { return true; } /** * Control whether or not the histogram can auto-resize and auto-adjust it's * highestTrackableValue * @param autoResize autoResize setting */ public void setAutoResize(boolean autoResize) { this.autoResize = autoResize; } // // // // Value recording support: // // // /** * Record a value in the histogram * * @param value The value to be recorded * @throws ArrayIndexOutOfBoundsException (may throw) if value is exceeds highestTrackableValue */ @Override public void recordValue(final long value) throws ArrayIndexOutOfBoundsException { recordSingleValue(value); } /** * Record a value in the histogram (adding to the value's current count) * * @param value The value to be recorded * @param count The number of occurrences of this value to record * @throws ArrayIndexOutOfBoundsException (may throw) if value is exceeds highestTrackableValue */ @Override public void recordValueWithCount(final long value, final long count) throws ArrayIndexOutOfBoundsException { recordCountAtValue(count, value); } /** * Record a value in the histogram. *

* To compensate for the loss of sampled values when a recorded value is larger than the expected * interval between value samples, Histogram will auto-generate an additional series of decreasingly-smaller * (down to the expectedIntervalBetweenValueSamples) value records. *

* Note: This is a at-recording correction method, as opposed to the post-recording correction method provided * by {@link #copyCorrectedForCoordinatedOmission(long)}. * The two methods are mutually exclusive, and only one of the two should be be used on a given data set to correct * for the same coordinated omission issue. *

* See notes in the description of the Histogram calls for an illustration of why this corrective behavior is * important. * * @param value The value to record * @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add * auto-generated value records as appropriate if value is larger * than expectedIntervalBetweenValueSamples * @throws ArrayIndexOutOfBoundsException (may throw) if value is exceeds highestTrackableValue */ @Override public void recordValueWithExpectedInterval(final long value, final long expectedIntervalBetweenValueSamples) throws ArrayIndexOutOfBoundsException { recordSingleValueWithExpectedInterval(value, expectedIntervalBetweenValueSamples); } // Package-internal support for converting and recording double values into integer histograms: void recordConvertedDoubleValue(final double value) { long integerValue = (long) (value * doubleToIntegerValueConversionRatio); recordValue(integerValue); } public void recordConvertedDoubleValueWithCount(final double value, final long count) throws ArrayIndexOutOfBoundsException { long integerValue = (long) (value * doubleToIntegerValueConversionRatio); recordCountAtValue(count, integerValue); } /** * @deprecated * * Record a value in the histogram. This deprecated method has identical behavior to * recordValueWithExpectedInterval(). It was renamed to avoid ambiguity. * * @param value The value to record * @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add * auto-generated value records as appropriate if value is larger * than expectedIntervalBetweenValueSamples * @throws ArrayIndexOutOfBoundsException (may throw) if value is exceeds highestTrackableValue */ public void recordValue(final long value, final long expectedIntervalBetweenValueSamples) throws ArrayIndexOutOfBoundsException { recordValueWithExpectedInterval(value, expectedIntervalBetweenValueSamples); } void updateMinAndMax(final long value) { if (value > maxValue) { updatedMaxValue(value); } if ((value < minNonZeroValue) && (value != 0)) { updateMinNonZeroValue(value); } } private void recordCountAtValue(final long count, final long value) throws ArrayIndexOutOfBoundsException { int countsIndex = countsArrayIndex(value); try { addToCountAtIndex(countsIndex, count); } catch (ArrayIndexOutOfBoundsException ex) { handleRecordException(count, value, ex); } catch (IndexOutOfBoundsException ex) { handleRecordException(count, value, ex); } updateMinAndMax(value); addToTotalCount(count); } private void recordSingleValue(final long value) throws ArrayIndexOutOfBoundsException { int countsIndex = countsArrayIndex(value); try { incrementCountAtIndex(countsIndex); } catch (ArrayIndexOutOfBoundsException ex) { handleRecordException(1, value, ex); } catch (IndexOutOfBoundsException ex) { handleRecordException(1, value, ex); } updateMinAndMax(value); incrementTotalCount(); } private void handleRecordException(final long count, final long value, Exception ex) { if (!autoResize) { throw new ArrayIndexOutOfBoundsException("value " + value + " outside of histogram covered range. Caused by: " + ex); } resize(value); int countsIndex = countsArrayIndex(value); addToCountAtIndex(countsIndex, count); this.highestTrackableValue = highestEquivalentValue(valueFromIndex(countsArrayLength - 1)); } private void recordValueWithCountAndExpectedInterval(final long value, final long count, final long expectedIntervalBetweenValueSamples) throws ArrayIndexOutOfBoundsException { recordCountAtValue(count, value); if (expectedIntervalBetweenValueSamples <= 0) return; for (long missingValue = value - expectedIntervalBetweenValueSamples; missingValue >= expectedIntervalBetweenValueSamples; missingValue -= expectedIntervalBetweenValueSamples) { recordCountAtValue(count, missingValue); } } private void recordSingleValueWithExpectedInterval(final long value, final long expectedIntervalBetweenValueSamples) throws ArrayIndexOutOfBoundsException { recordSingleValue(value); if (expectedIntervalBetweenValueSamples <= 0) return; for (long missingValue = value - expectedIntervalBetweenValueSamples; missingValue >= expectedIntervalBetweenValueSamples; missingValue -= expectedIntervalBetweenValueSamples) { recordSingleValue(missingValue); } } // // // // Clearing support: // // // /** * Reset the contents and stats of this histogram */ @Override public void reset() { clearCounts(); resetMaxValue(0); resetMinNonZeroValue(Long.MAX_VALUE); setNormalizingIndexOffset(0); startTimeStampMsec = Long.MAX_VALUE; endTimeStampMsec = 0; tag = null; } // // // // Copy support: // // // /** * Create a copy of this histogram, complete with data and everything. * * @return A distinct copy of this histogram. */ abstract public AbstractHistogram copy(); /** * Get a copy of this histogram, corrected for coordinated omission. *

* To compensate for the loss of sampled values when a recorded value is larger than the expected * interval between value samples, the new histogram will include an auto-generated additional series of * decreasingly-smaller (down to the expectedIntervalBetweenValueSamples) value records for each count found * in the current histogram that is larger than the expectedIntervalBetweenValueSamples. * * Note: This is a post-correction method, as opposed to the at-recording correction method provided * by {@link #recordValueWithExpectedInterval(long, long) recordValueWithExpectedInterval}. The two * methods are mutually exclusive, and only one of the two should be be used on a given data set to correct * for the same coordinated omission issue. * by *

* See notes in the description of the Histogram calls for an illustration of why this corrective behavior is * important. * * @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add * auto-generated value records as appropriate if value is larger * than expectedIntervalBetweenValueSamples * @return a copy of this histogram, corrected for coordinated omission. */ abstract public AbstractHistogram copyCorrectedForCoordinatedOmission(long expectedIntervalBetweenValueSamples); /** * Copy this histogram into the target histogram, overwriting it's contents. * * @param targetHistogram the histogram to copy into */ public void copyInto(final AbstractHistogram targetHistogram) { targetHistogram.reset(); targetHistogram.add(this); targetHistogram.setStartTimeStamp(this.startTimeStampMsec); targetHistogram.setEndTimeStamp(this.endTimeStampMsec); } /** * Copy this histogram, corrected for coordinated omission, into the target histogram, overwriting it's contents. * (see {@link #copyCorrectedForCoordinatedOmission} for more detailed explanation about how correction is applied) * * @param targetHistogram the histogram to copy into * @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add * auto-generated value records as appropriate if value is larger * than expectedIntervalBetweenValueSamples */ public void copyIntoCorrectedForCoordinatedOmission(final AbstractHistogram targetHistogram, final long expectedIntervalBetweenValueSamples) { targetHistogram.reset(); targetHistogram.addWhileCorrectingForCoordinatedOmission(this, expectedIntervalBetweenValueSamples); targetHistogram.setStartTimeStamp(this.startTimeStampMsec); targetHistogram.setEndTimeStamp(this.endTimeStampMsec); } // // // // Add support: // // // /** * Add the contents of another histogram to this one. *

* As part of adding the contents, the start/end timestamp range of this histogram will be * extended to include the start/end timestamp range of the other histogram. * * @param otherHistogram The other histogram. * @throws ArrayIndexOutOfBoundsException (may throw) if values in fromHistogram's are * higher than highestTrackableValue. */ public void add(final AbstractHistogram otherHistogram) throws ArrayIndexOutOfBoundsException { long highestRecordableValue = highestEquivalentValue(valueFromIndex(countsArrayLength - 1)); if (highestRecordableValue < otherHistogram.getMaxValue()) { if (!isAutoResize()) { throw new ArrayIndexOutOfBoundsException( "The other histogram includes values that do not fit in this histogram's range."); } resize(otherHistogram.getMaxValue()); } if ((bucketCount == otherHistogram.bucketCount) && (subBucketCount == otherHistogram.subBucketCount) && (unitMagnitude == otherHistogram.unitMagnitude) && (getNormalizingIndexOffset() == otherHistogram.getNormalizingIndexOffset()) && !(otherHistogram instanceof ConcurrentHistogram) ) { // Counts arrays are of the same length and meaning, so we can just iterate and add directly: long observedOtherTotalCount = 0; for (int i = 0; i < otherHistogram.countsArrayLength; i++) { long otherCount = otherHistogram.getCountAtIndex(i); if (otherCount > 0) { addToCountAtIndex(i, otherCount); observedOtherTotalCount += otherCount; } } setTotalCount(getTotalCount() + observedOtherTotalCount); updatedMaxValue(Math.max(getMaxValue(), otherHistogram.getMaxValue())); updateMinNonZeroValue(Math.min(getMinNonZeroValue(), otherHistogram.getMinNonZeroValue())); } else { // Arrays are not a direct match (or the other could change on the fly in some valid way), // so we can't just stream through and add them. Instead, go through the array and add each // non-zero value found at it's proper value: // Do max value first, to avoid max value updates on each iteration: int otherMaxIndex = otherHistogram.countsArrayIndex(otherHistogram.getMaxValue()); long otherCount = otherHistogram.getCountAtIndex(otherMaxIndex); recordValueWithCount(otherHistogram.valueFromIndex(otherMaxIndex), otherCount); // Record the remaining values, up to but not including the max value: for (int i = 0; i < otherMaxIndex; i++) { otherCount = otherHistogram.getCountAtIndex(i); if (otherCount > 0) { recordValueWithCount(otherHistogram.valueFromIndex(i), otherCount); } } } setStartTimeStamp(Math.min(startTimeStampMsec, otherHistogram.startTimeStampMsec)); setEndTimeStamp(Math.max(endTimeStampMsec, otherHistogram.endTimeStampMsec)); } /** * Subtract the contents of another histogram from this one. *

* The start/end timestamps of this histogram will remain unchanged. * * @param otherHistogram The other histogram. * @throws ArrayIndexOutOfBoundsException (may throw) if values in otherHistogram's are higher than highestTrackableValue. * */ public void subtract(final AbstractHistogram otherHistogram) throws ArrayIndexOutOfBoundsException, IllegalArgumentException { if (highestEquivalentValue(otherHistogram.getMaxValue()) > highestEquivalentValue(valueFromIndex(this.countsArrayLength - 1))) { throw new IllegalArgumentException( "The other histogram includes values that do not fit in this histogram's range."); } for (int i = 0; i < otherHistogram.countsArrayLength; i++) { long otherCount = otherHistogram.getCountAtIndex(i); if (otherCount > 0) { long otherValue = otherHistogram.valueFromIndex(i); if (getCountAtValue(otherValue) < otherCount) { throw new IllegalArgumentException("otherHistogram count (" + otherCount + ") at value " + otherValue + " is larger than this one's (" + getCountAtValue(otherValue) + ")"); } recordValueWithCount(otherValue, -otherCount); } } // With subtraction, the max and minNonZero values could have changed: if ((getCountAtValue(getMaxValue()) <= 0) || getCountAtValue(getMinNonZeroValue()) <= 0) { establishInternalTackingValues(); } } /** * Add the contents of another histogram to this one, while correcting the incoming data for coordinated omission. *

* To compensate for the loss of sampled values when a recorded value is larger than the expected * interval between value samples, the values added will include an auto-generated additional series of * decreasingly-smaller (down to the expectedIntervalBetweenValueSamples) value records for each count found * in the current histogram that is larger than the expectedIntervalBetweenValueSamples. * * Note: This is a post-recording correction method, as opposed to the at-recording correction method provided * by {@link #recordValueWithExpectedInterval(long, long) recordValueWithExpectedInterval}. The two * methods are mutually exclusive, and only one of the two should be be used on a given data set to correct * for the same coordinated omission issue. * by *

* See notes in the description of the Histogram calls for an illustration of why this corrective behavior is * important. * * @param otherHistogram The other histogram. highestTrackableValue and largestValueWithSingleUnitResolution must match. * @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add * auto-generated value records as appropriate if value is larger * than expectedIntervalBetweenValueSamples * @throws ArrayIndexOutOfBoundsException (may throw) if values exceed highestTrackableValue */ public void addWhileCorrectingForCoordinatedOmission(final AbstractHistogram otherHistogram, final long expectedIntervalBetweenValueSamples) { final AbstractHistogram toHistogram = this; for (HistogramIterationValue v : otherHistogram.recordedValues()) { toHistogram.recordValueWithCountAndExpectedInterval(v.getValueIteratedTo(), v.getCountAtValueIteratedTo(), expectedIntervalBetweenValueSamples); } } // // // // Shifting support: // // // /** * Shift recorded values to the left (the equivalent of a << shift operation on all recorded values). The * configured integer value range limits and value precision setting will remain unchanged. * * An {@link ArrayIndexOutOfBoundsException} will be thrown if any recorded values may be lost * as a result of the attempted operation, reflecting an "overflow" conditions. Expect such an overflow * exception if the operation would cause the current maxValue to be scaled to a value that is outside * of the covered value range. * * @param numberOfBinaryOrdersOfMagnitude The number of binary orders of magnitude to shift by */ public void shiftValuesLeft(final int numberOfBinaryOrdersOfMagnitude) { shiftValuesLeft(numberOfBinaryOrdersOfMagnitude, integerToDoubleValueConversionRatio); } void shiftValuesLeft(final int numberOfBinaryOrdersOfMagnitude, final double newIntegerToDoubleValueConversionRatio) { if (numberOfBinaryOrdersOfMagnitude < 0) { throw new IllegalArgumentException("Cannot shift by a negative number of magnitudes"); } if (numberOfBinaryOrdersOfMagnitude == 0) { return; } if (getTotalCount() == getCountAtIndex(0)) { // (no need to shift any values if all recorded values are at the 0 value level:) return; } final int shiftAmount = numberOfBinaryOrdersOfMagnitude << subBucketHalfCountMagnitude; int maxValueIndex = countsArrayIndex(getMaxValue()); // indicate overflow if maxValue is in the range being wrapped: if (maxValueIndex >= (countsArrayLength - shiftAmount)) { throw new ArrayIndexOutOfBoundsException( "Operation would overflow, would discard recorded value counts"); } long maxValueBeforeShift = maxValueUpdater.getAndSet(this, 0); long minNonZeroValueBeforeShift = minNonZeroValueUpdater.getAndSet(this, Long.MAX_VALUE); boolean lowestHalfBucketPopulated = (minNonZeroValueBeforeShift < (subBucketHalfCount << unitMagnitude)); // Perform the shift: shiftNormalizingIndexByOffset(shiftAmount, lowestHalfBucketPopulated, newIntegerToDoubleValueConversionRatio); // adjust min, max: updateMinAndMax(maxValueBeforeShift << numberOfBinaryOrdersOfMagnitude); if (minNonZeroValueBeforeShift < Long.MAX_VALUE) { updateMinAndMax(minNonZeroValueBeforeShift << numberOfBinaryOrdersOfMagnitude); } } void nonConcurrentNormalizingIndexShift(int shiftAmount, boolean lowestHalfBucketPopulated) { // Save and clear the 0 value count: long zeroValueCount = getCountAtIndex(0); setCountAtIndex(0, 0); int preShiftZeroIndex = normalizeIndex(0, getNormalizingIndexOffset(), countsArrayLength); setNormalizingIndexOffset(getNormalizingIndexOffset() + shiftAmount); // Deal with lower half bucket if needed: if (lowestHalfBucketPopulated) { if (shiftAmount <= 0) { // Shifts with lowest half bucket populated can only be to the left. // Any right shift logic calling this should have already verified that // the lowest half bucket is not populated. throw new ArrayIndexOutOfBoundsException( "Attempt to right-shift with already-recorded value counts that would underflow and lose precision"); } shiftLowestHalfBucketContentsLeft(shiftAmount, preShiftZeroIndex); } // Restore the 0 value count: setCountAtIndex(0, zeroValueCount); } private void shiftLowestHalfBucketContentsLeft(int shiftAmount, int preShiftZeroIndex) { final int numberOfBinaryOrdersOfMagnitude = shiftAmount >> subBucketHalfCountMagnitude; // The lowest half-bucket (not including the 0 value) is special: unlike all other half // buckets, the lowest half bucket values cannot be scaled by simply changing the // normalizing offset. Instead, they must be individually re-recorded at the new // scale, and cleared from the current one. // // We know that all half buckets "below" the current lowest one are full of 0s, because // we would have overflowed otherwise. So we need to shift the values in the current // lowest half bucket into that range (including the current lowest half bucket itself). // Iterating up from the lowermost non-zero "from slot" and copying values to the newly // scaled "to slot" (and then zeroing the "from slot"), will work in a single pass, // because the scale "to slot" index will always be a lower index than its or any // preceding non-scaled "from slot" index: // // (Note that we specifically avoid slot 0, as it is directly handled in the outer case) for (int fromIndex = 1; fromIndex < subBucketHalfCount; fromIndex++) { long toValue = valueFromIndex(fromIndex) << numberOfBinaryOrdersOfMagnitude; int toIndex = countsArrayIndex(toValue); long countAtFromIndex = getCountAtNormalizedIndex(fromIndex + preShiftZeroIndex); setCountAtIndex(toIndex, countAtFromIndex); setCountAtNormalizedIndex(fromIndex + preShiftZeroIndex, 0); } // Note that the above loop only creates O(N) work for histograms that have values in // the lowest half-bucket (excluding the 0 value). Histograms that never have values // there (e.g. all integer value histograms used as internal storage in DoubleHistograms) // will never loop, and their shifts will remain O(1). } /** * Shift recorded values to the right (the equivalent of a >> shift operation on all recorded values). The * configured integer value range limits and value precision setting will remain unchanged. *

* Shift right operations that do not underflow are reversible with a shift left operation with no loss of * information. An {@link ArrayIndexOutOfBoundsException} reflecting an "underflow" conditions will be thrown * if any recorded values may lose representation accuracy as a result of the attempted shift operation. *

* For a shift of a single order of magnitude, expect such an underflow exception if any recorded non-zero * values up to [numberOfSignificantValueDigits (rounded up to nearest power of 2) multiplied by * (2 ^ numberOfBinaryOrdersOfMagnitude) currently exist in the histogram. * * @param numberOfBinaryOrdersOfMagnitude The number of binary orders of magnitude to shift by */ public void shiftValuesRight(final int numberOfBinaryOrdersOfMagnitude) { shiftValuesRight(numberOfBinaryOrdersOfMagnitude, integerToDoubleValueConversionRatio); } void shiftValuesRight(final int numberOfBinaryOrdersOfMagnitude, final double newIntegerToDoubleValueConversionRatio) { if (numberOfBinaryOrdersOfMagnitude < 0) { throw new IllegalArgumentException("Cannot shift by a negative number of magnitudes"); } if (numberOfBinaryOrdersOfMagnitude == 0) { return; } if (getTotalCount() == getCountAtIndex(0)) { // (no need to shift any values if all recorded values are at the 0 value level:) return; } final int shiftAmount = subBucketHalfCount * numberOfBinaryOrdersOfMagnitude; // indicate underflow if minValue is in the range being shifted from: int minNonZeroValueIndex = countsArrayIndex(getMinNonZeroValue()); // Any shifting into the bottom-most half bucket would represents a loss of accuracy, // and a non-reversible operation. Therefore any non-0 value that falls in an // index below (shiftAmount + subBucketHalfCount) would represent an underflow: // // The fact that the top and bottom halves of the first bucket use the same scale // means any shift into the bottom half is invalid. The shift requires that each // successive subBucketCount be encoded with a scale 2x the previous one, as that // is how the powers of 2 are applied. // In particular, if the shift amount is such that it would shift something from // the top half of the first bucket to the bottom half, that's all stored with the // same unit, so half of a larger odd value couldn't be restored to its proper // value by a subsequent left shift because we would need the bottom half to be // encoded in half-units. // Furthermore, shifts from anywhere (in the top half of the first bucket or // beyond) will be incorrectly encoded if they end up in the bottom half. If // subBucketHalfCount is, say, 1024, and the shift is by 1, the value for 1600 // would become 576, which is certainly not 1600/2. With a shift of 2 and a // value of 2112 (index 2048 + 32), the resulting value is 32, not 525. For // comparison, with shift 2 and value 4096 (index 2048 + 1024 = 3072), 3072 - 2048 = 1024. // That's the first entry in the top half of bucket 0, which encodes simply // 1024 = 4096 / 4. Thus, any non-0 value that falls in an index below // (shiftAmount + subBucketHalfCount) would represent an underflow. // if (minNonZeroValueIndex < shiftAmount + subBucketHalfCount) { throw new ArrayIndexOutOfBoundsException( "Operation would underflow and lose precision of already recorded value counts"); } // perform shift: long maxValueBeforeShift = maxValueUpdater.getAndSet(this, 0); long minNonZeroValueBeforeShift = minNonZeroValueUpdater.getAndSet(this, Long.MAX_VALUE); // move normalizingIndexOffset shiftNormalizingIndexByOffset(-shiftAmount, false, newIntegerToDoubleValueConversionRatio); // adjust min, max: updateMinAndMax(maxValueBeforeShift >> numberOfBinaryOrdersOfMagnitude); if (minNonZeroValueBeforeShift < Long.MAX_VALUE) { updateMinAndMax(minNonZeroValueBeforeShift >> numberOfBinaryOrdersOfMagnitude); } } // // // // Comparison support: // // // /** * Determine if this histogram is equivalent to another. * * @param other the other histogram to compare to * @return True if this histogram are equivalent with the other. */ public boolean equals(final Object other){ if ( this == other ) { return true; } if ( !(other instanceof AbstractHistogram) ) { return false; } AbstractHistogram that = (AbstractHistogram)other; if ((lowestDiscernibleValue != that.lowestDiscernibleValue) || (numberOfSignificantValueDigits != that.numberOfSignificantValueDigits) || (integerToDoubleValueConversionRatio != that.integerToDoubleValueConversionRatio)) { return false; } if (getTotalCount() != that.getTotalCount()) { return false; } if (getMaxValue() != that.getMaxValue()) { return false; } if (getMinNonZeroValue() != that.getMinNonZeroValue()) { return false; } // 2 histograms may be equal but have different underlying array sizes. This can happen for instance due to // resizing. if (countsArrayLength == that.countsArrayLength) { for (int i = 0; i < countsArrayLength; i++) { if (getCountAtIndex(i) != that.getCountAtIndex(i)) { return false; } } } else { // Comparing the values is valid here because we have already confirmed the histograms have the same total // count. It would not be correct otherwise. for (HistogramIterationValue value : this.recordedValues()) { long countAtValueIteratedTo = value.getCountAtValueIteratedTo(); long valueIteratedTo = value.getValueIteratedTo(); if (that.getCountAtValue(valueIteratedTo) != countAtValueIteratedTo) { return false; } } } return true; } @Override public int hashCode() { int h = 0; h = oneAtATimeHashStep(h, unitMagnitude); h = oneAtATimeHashStep(h, numberOfSignificantValueDigits); h = oneAtATimeHashStep(h, (int) getTotalCount()); h = oneAtATimeHashStep(h, (int) getMaxValue()); h = oneAtATimeHashStep(h, (int) getMinNonZeroValue()); h += (h << 3); h ^= (h >> 11); h += (h << 15); return h; } private int oneAtATimeHashStep(int h, final int v) { h += v; h += (h << 10); h ^= (h >> 6); return h; } // // // // Histogram structure querying support: // // // /** * get the configured lowestDiscernibleValue * @return lowestDiscernibleValue */ public long getLowestDiscernibleValue() { return lowestDiscernibleValue; } /** * get the configured highestTrackableValue * @return highestTrackableValue */ public long getHighestTrackableValue() { return highestTrackableValue; } /** * get the configured numberOfSignificantValueDigits * @return numberOfSignificantValueDigits */ public int getNumberOfSignificantValueDigits() { return numberOfSignificantValueDigits; } /** * Get the size (in value units) of the range of values that are equivalent to the given value within the * histogram's resolution. Where "equivalent" means that value samples recorded for any two * equivalent values are counted in a common total count. * * @param value The given value * @return The size of the range of values equivalent to the given value. */ public long sizeOfEquivalentValueRange(final long value) { final int bucketIndex = getBucketIndex(value); final int subBucketIndex = getSubBucketIndex(value, bucketIndex); long distanceToNextValue = 1L << (unitMagnitude + bucketIndex); return distanceToNextValue; } /** * Get the lowest value that is equivalent to the given value within the histogram's resolution. * Where "equivalent" means that value samples recorded for any two * equivalent values are counted in a common total count. * * @param value The given value * @return The lowest value that is equivalent to the given value within the histogram's resolution. */ public long lowestEquivalentValue(final long value) { final int bucketIndex = getBucketIndex(value); final int subBucketIndex = getSubBucketIndex(value, bucketIndex); long thisValueBaseLevel = valueFromIndex(bucketIndex, subBucketIndex); return thisValueBaseLevel; } /** * Get the highest value that is equivalent to the given value within the histogram's resolution. * Where "equivalent" means that value samples recorded for any two * equivalent values are counted in a common total count. * * @param value The given value * @return The highest value that is equivalent to the given value within the histogram's resolution. */ public long highestEquivalentValue(final long value) { return nextNonEquivalentValue(value) - 1; } /** * Get a value that lies in the middle (rounded up) of the range of values equivalent the given value. * Where "equivalent" means that value samples recorded for any two * equivalent values are counted in a common total count. * * @param value The given value * @return The value lies in the middle (rounded up) of the range of values equivalent the given value. */ public long medianEquivalentValue(final long value) { return (lowestEquivalentValue(value) + (sizeOfEquivalentValueRange(value) >> 1)); } /** * Get the next value that is not equivalent to the given value within the histogram's resolution. * Where "equivalent" means that value samples recorded for any two * equivalent values are counted in a common total count. * * @param value The given value * @return The next value that is not equivalent to the given value within the histogram's resolution. */ public long nextNonEquivalentValue(final long value) { return lowestEquivalentValue(value) + sizeOfEquivalentValueRange(value); } /** * Determine if two values are equivalent with the histogram's resolution. * Where "equivalent" means that value samples recorded for any two * equivalent values are counted in a common total count. * * @param value1 first value to compare * @param value2 second value to compare * @return True if values are equivalent with the histogram's resolution. */ public boolean valuesAreEquivalent(final long value1, final long value2) { return (lowestEquivalentValue(value1) == lowestEquivalentValue(value2)); } /** * Provide a (conservatively high) estimate of the Histogram's total footprint in bytes * * @return a (conservatively high) estimate of the Histogram's total footprint in bytes */ public int getEstimatedFootprintInBytes() { return _getEstimatedFootprintInBytes(); } // // // // Timestamp and tag support: // // // /** * get the start time stamp [optionally] stored with this histogram * @return the start time stamp [optionally] stored with this histogram */ @Override public long getStartTimeStamp() { return startTimeStampMsec; } /** * Set the start time stamp value associated with this histogram to a given value. * @param timeStampMsec the value to set the time stamp to, [by convention] in msec since the epoch. */ @Override public void setStartTimeStamp(final long timeStampMsec) { this.startTimeStampMsec = timeStampMsec; } /** * get the end time stamp [optionally] stored with this histogram * @return the end time stamp [optionally] stored with this histogram */ @Override public long getEndTimeStamp() { return endTimeStampMsec; } /** * Set the end time stamp value associated with this histogram to a given value. * @param timeStampMsec the value to set the time stamp to, [by convention] in msec since the epoch. */ @Override public void setEndTimeStamp(final long timeStampMsec) { this.endTimeStampMsec = timeStampMsec; } /** * get the tag string [optionally] associated with this histogram * @return tag string [optionally] associated with this histogram */ public String getTag() { return tag; } /** * Set the tag string associated with this histogram * @param tag the tag string to assciate with this histogram */ public void setTag(String tag) { this.tag = tag; } // // // // Histogram Data access support: // // // /** * Get the lowest recorded value level in the histogram. If the histogram has no recorded values, * the value returned is undefined. * * @return the Min value recorded in the histogram */ public long getMinValue() { if ((getCountAtIndex(0) > 0) || (getTotalCount() == 0)) { return 0; } return getMinNonZeroValue(); } /** * Get the highest recorded value level in the histogram. If the histogram has no recorded values, * the value returned is undefined. * * @return the Max value recorded in the histogram */ public long getMaxValue() { return (maxValue == 0) ? 0 : highestEquivalentValue(maxValue); } /** * Get the lowest recorded non-zero value level in the histogram. If the histogram has no recorded values, * the value returned is undefined. * * @return the lowest recorded non-zero value level in the histogram */ public long getMinNonZeroValue() { return (minNonZeroValue == Long.MAX_VALUE) ? Long.MAX_VALUE : lowestEquivalentValue(minNonZeroValue); } /** * Get the highest recorded value level in the histogram as a double * * @return the Max value recorded in the histogram */ @Override public double getMaxValueAsDouble() { return getMaxValue(); } /** * Get the computed mean value of all recorded values in the histogram * * @return the mean value (in value units) of the histogram data */ public double getMean() { if (getTotalCount() == 0) { return 0.0; } recordedValuesIterator.reset(); double totalValue = 0; while (recordedValuesIterator.hasNext()) { HistogramIterationValue iterationValue = recordedValuesIterator.next(); totalValue += medianEquivalentValue(iterationValue.getValueIteratedTo()) * (double) iterationValue.getCountAtValueIteratedTo(); } return (totalValue * 1.0) / getTotalCount(); } /** * Get the computed standard deviation of all recorded values in the histogram * * @return the standard deviation (in value units) of the histogram data */ public double getStdDeviation() { if (getTotalCount() == 0) { return 0.0; } final double mean = getMean(); double geometric_deviation_total = 0.0; recordedValuesIterator.reset(); while (recordedValuesIterator.hasNext()) { HistogramIterationValue iterationValue = recordedValuesIterator.next(); double deviation = (medianEquivalentValue(iterationValue.getValueIteratedTo()) * 1.0) - mean; geometric_deviation_total += (deviation * deviation) * iterationValue.getCountAddedInThisIterationStep(); } double std_deviation = Math.sqrt(geometric_deviation_total / getTotalCount()); return std_deviation; } /** * Get the value at a given percentile. * Returns the largest value that (100% - percentile) [+/- 1 ulp] of the overall recorded value entries * in the histogram are either larger than or equivalent to. Returns 0 if no recorded values exist. *

* Note that two values are "equivalent" in this statement if * {@link org.HdrHistogram.AbstractHistogram#valuesAreEquivalent} would return true. * * @param percentile The percentile for which to return the associated value * @return The largest value that (100% - percentile) [+/- 1 ulp] of the overall recorded value entries * in the histogram are either larger than or equivalent to. Returns 0 if no recorded values exist. */ public long getValueAtPercentile(final double percentile) { // Truncate to 0..100%, and remove 1 ulp to avoid roundoff overruns into next bucket when we // subsequently round up to the nearest integer: double requestedPercentile = Math.min(Math.max(Math.nextAfter(percentile, Double.NEGATIVE_INFINITY), 0.0D), 100.0D); // derive the count at the requested percentile. We round up to nearest integer to ensure that the // largest value that the requested percentile of overall recorded values is <= is actually included. double fpCountAtPercentile = (requestedPercentile * getTotalCount()) / 100.0D; long countAtPercentile = (long)(Math.ceil(fpCountAtPercentile)); // round up countAtPercentile = Math.max(countAtPercentile, 1); // Make sure we at least reach the first recorded entry long totalToCurrentIndex = 0; for (int i = 0; i < countsArrayLength; i++) { totalToCurrentIndex += getCountAtIndex(i); if (totalToCurrentIndex >= countAtPercentile) { long valueAtIndex = valueFromIndex(i); return (percentile == 0.0) ? lowestEquivalentValue(valueAtIndex) : highestEquivalentValue(valueAtIndex); } } return 0; } /** * Get the percentile at a given value. * The percentile returned is the percentile of values recorded in the histogram that are smaller * than or equivalent to the given value. *

* Note that two values are "equivalent" in this statement if * {@link org.HdrHistogram.AbstractHistogram#valuesAreEquivalent} would return true. * * @param value The value for which to return the associated percentile * @return The percentile of values recorded in the histogram that are smaller than or equivalent * to the given value. */ public double getPercentileAtOrBelowValue(final long value) { if (getTotalCount() == 0) { return 100.0; } final int targetIndex = Math.min(countsArrayIndex(value), (countsArrayLength - 1)); long totalToCurrentIndex = 0; for (int i = 0; i <= targetIndex; i++) { totalToCurrentIndex += getCountAtIndex(i); } return (100.0 * totalToCurrentIndex) / getTotalCount(); } /** * Get the count of recorded values within a range of value levels (inclusive to within the histogram's resolution). * * @param lowValue The lower value bound on the range for which * to provide the recorded count. Will be rounded down with * {@link Histogram#lowestEquivalentValue lowestEquivalentValue}. * @param highValue The higher value bound on the range for which to provide the recorded count. * Will be rounded up with {@link Histogram#highestEquivalentValue highestEquivalentValue}. * @return the total count of values recorded in the histogram within the value range that is * {@literal >=} lowestEquivalentValue(lowValue) and {@literal <=} highestEquivalentValue(highValue) */ public long getCountBetweenValues(final long lowValue, final long highValue) throws ArrayIndexOutOfBoundsException { final int lowIndex = Math.max(0, countsArrayIndex(lowValue)); final int highIndex = Math.min(countsArrayIndex(highValue), (countsArrayLength - 1)); long count = 0; for (int i = lowIndex ; i <= highIndex; i++) { count += getCountAtIndex(i); } return count; } /** * Get the count of recorded values at a specific value (to within the histogram resolution at the value level). * * @param value The value for which to provide the recorded count * @return The total count of values recorded in the histogram within the value range that is * {@literal >=} lowestEquivalentValue(value) and {@literal <=} highestEquivalentValue(value) */ public long getCountAtValue(final long value) throws ArrayIndexOutOfBoundsException { final int index = Math.min(Math.max(0, countsArrayIndex(value)), (countsArrayLength - 1)); return getCountAtIndex(index); } /** * Provide a means of iterating through histogram values according to percentile levels. The iteration is * performed in steps that start at 0% and reduce their distance to 100% according to the * percentileTicksPerHalfDistance parameter, ultimately reaching 100% when all recorded histogram * values are exhausted. *

* @param percentileTicksPerHalfDistance The number of iteration steps per half-distance to 100%. * @return An {@link java.lang.Iterable}{@literal <}{@link HistogramIterationValue}{@literal >} * through the histogram using a * {@link PercentileIterator} */ public Percentiles percentiles(final int percentileTicksPerHalfDistance) { return new Percentiles(this, percentileTicksPerHalfDistance); } /** * Provide a means of iterating through histogram values using linear steps. The iteration is * performed in steps of valueUnitsPerBucket in size, terminating when all recorded histogram * values are exhausted. * * @param valueUnitsPerBucket The size (in value units) of the linear buckets to use * @return An {@link java.lang.Iterable}{@literal <}{@link HistogramIterationValue}{@literal >} * through the histogram using a * {@link LinearIterator} */ public LinearBucketValues linearBucketValues(final long valueUnitsPerBucket) { return new LinearBucketValues(this, valueUnitsPerBucket); } /** * Provide a means of iterating through histogram values at logarithmically increasing levels. The iteration is * performed in steps that start at valueUnitsInFirstBucket and increase exponentially according to * logBase, terminating when all recorded histogram values are exhausted. * * @param valueUnitsInFirstBucket The size (in value units) of the first bucket in the iteration * @param logBase The multiplier by which bucket sizes will grow in each iteration step * @return An {@link java.lang.Iterable}{@literal <}{@link HistogramIterationValue}{@literal >} * through the histogram using * a {@link LogarithmicIterator} */ public LogarithmicBucketValues logarithmicBucketValues(final long valueUnitsInFirstBucket, final double logBase) { return new LogarithmicBucketValues(this, valueUnitsInFirstBucket, logBase); } /** * Provide a means of iterating through all recorded histogram values using the finest granularity steps * supported by the underlying representation. The iteration steps through all non-zero recorded value counts, * and terminates when all recorded histogram values are exhausted. * * @return An {@link java.lang.Iterable}{@literal <}{@link HistogramIterationValue}{@literal >} * through the histogram using * a {@link RecordedValuesIterator} */ public RecordedValues recordedValues() { return new RecordedValues(this); } /** * Provide a means of iterating through all histogram values using the finest granularity steps supported by * the underlying representation. The iteration steps through all possible unit value levels, regardless of * whether or not there were recorded values for that value level, and terminates when all recorded histogram * values are exhausted. * * @return An {@link java.lang.Iterable}{@literal <}{@link HistogramIterationValue}{@literal >} * through the histogram using * a {@link AllValuesIterator} */ public AllValues allValues() { return new AllValues(this); } // Percentile iterator support: /** * An {@link java.lang.Iterable}{@literal <}{@link HistogramIterationValue}{@literal >} through * the histogram using a {@link PercentileIterator} */ public class Percentiles implements Iterable { final AbstractHistogram histogram; final int percentileTicksPerHalfDistance; private Percentiles(final AbstractHistogram histogram, final int percentileTicksPerHalfDistance) { this.histogram = histogram; this.percentileTicksPerHalfDistance = percentileTicksPerHalfDistance; } /** * @return A {@link PercentileIterator}{@literal <}{@link HistogramIterationValue}{@literal >} */ public Iterator iterator() { return new PercentileIterator(histogram, percentileTicksPerHalfDistance); } } // Linear iterator support: /** * An {@link java.lang.Iterable}{@literal <}{@link HistogramIterationValue}{@literal >} through * the histogram using a {@link LinearIterator} */ public class LinearBucketValues implements Iterable { final AbstractHistogram histogram; final long valueUnitsPerBucket; private LinearBucketValues(final AbstractHistogram histogram, final long valueUnitsPerBucket) { this.histogram = histogram; this.valueUnitsPerBucket = valueUnitsPerBucket; } /** * @return A {@link LinearIterator}{@literal <}{@link HistogramIterationValue}{@literal >} */ public Iterator iterator() { return new LinearIterator(histogram, valueUnitsPerBucket); } } // Logarithmic iterator support: /** * An {@link java.lang.Iterable}{@literal <}{@link HistogramIterationValue}{@literal >} through * the histogram using a {@link LogarithmicIterator} */ public class LogarithmicBucketValues implements Iterable { final AbstractHistogram histogram; final long valueUnitsInFirstBucket; final double logBase; private LogarithmicBucketValues(final AbstractHistogram histogram, final long valueUnitsInFirstBucket, final double logBase) { this.histogram = histogram; this.valueUnitsInFirstBucket = valueUnitsInFirstBucket; this.logBase = logBase; } /** * @return A {@link LogarithmicIterator}{@literal <}{@link HistogramIterationValue}{@literal >} */ public Iterator iterator() { return new LogarithmicIterator(histogram, valueUnitsInFirstBucket, logBase); } } // Recorded value iterator support: /** * An {@link java.lang.Iterable}{@literal <}{@link HistogramIterationValue}{@literal >} through * the histogram using a {@link RecordedValuesIterator} */ public class RecordedValues implements Iterable { final AbstractHistogram histogram; private RecordedValues(final AbstractHistogram histogram) { this.histogram = histogram; } /** * @return A {@link RecordedValuesIterator}{@literal <}{@link HistogramIterationValue}{@literal >} */ public Iterator iterator() { return new RecordedValuesIterator(histogram); } } // AllValues iterator support: /** * An {@link java.lang.Iterable}{@literal <}{@link HistogramIterationValue}{@literal >} through * the histogram using a {@link AllValuesIterator} */ public class AllValues implements Iterable { final AbstractHistogram histogram; private AllValues(final AbstractHistogram histogram) { this.histogram = histogram; } /** * @return A {@link AllValuesIterator}{@literal <}{@link HistogramIterationValue}{@literal >} */ public Iterator iterator() { return new AllValuesIterator(histogram); } } /** * Produce textual representation of the value distribution of histogram data by percentile. The distribution is * output with exponentially increasing resolution, with each exponentially decreasing half-distance containing * five (5) percentile reporting tick points. * * @param printStream Stream into which the distribution will be output *

* @param outputValueUnitScalingRatio The scaling factor by which to divide histogram recorded values units in * output */ public void outputPercentileDistribution(final PrintStream printStream, final Double outputValueUnitScalingRatio) { outputPercentileDistribution(printStream, 5, outputValueUnitScalingRatio); } // // // // Textual percentile output support: // // // /** * Produce textual representation of the value distribution of histogram data by percentile. The distribution is * output with exponentially increasing resolution, with each exponentially decreasing half-distance containing * dumpTicksPerHalf percentile reporting tick points. * * @param printStream Stream into which the distribution will be output *

* @param percentileTicksPerHalfDistance The number of reporting points per exponentially decreasing half-distance *

* @param outputValueUnitScalingRatio The scaling factor by which to divide histogram recorded values units in * output */ public void outputPercentileDistribution(final PrintStream printStream, final int percentileTicksPerHalfDistance, final Double outputValueUnitScalingRatio) { outputPercentileDistribution(printStream, percentileTicksPerHalfDistance, outputValueUnitScalingRatio, false); } /** * Produce textual representation of the value distribution of histogram data by percentile. The distribution is * output with exponentially increasing resolution, with each exponentially decreasing half-distance containing * dumpTicksPerHalf percentile reporting tick points. * * @param printStream Stream into which the distribution will be output *

* @param percentileTicksPerHalfDistance The number of reporting points per exponentially decreasing half-distance *

* @param outputValueUnitScalingRatio The scaling factor by which to divide histogram recorded values units in * output * @param useCsvFormat Output in CSV format if true. Otherwise use plain text form. */ public void outputPercentileDistribution(final PrintStream printStream, final int percentileTicksPerHalfDistance, final Double outputValueUnitScalingRatio, final boolean useCsvFormat) { if (useCsvFormat) { printStream.format("\"Value\",\"Percentile\",\"TotalCount\",\"1/(1-Percentile)\"\n"); } else { printStream.format("%12s %14s %10s %14s\n\n", "Value", "Percentile", "TotalCount", "1/(1-Percentile)"); } PercentileIterator iterator = percentileIterator; iterator.reset(percentileTicksPerHalfDistance); String percentileFormatString; String lastLinePercentileFormatString; if (useCsvFormat) { percentileFormatString = "%." + numberOfSignificantValueDigits + "f,%.12f,%d,%.2f\n"; lastLinePercentileFormatString = "%." + numberOfSignificantValueDigits + "f,%.12f,%d,Infinity\n"; } else { percentileFormatString = "%12." + numberOfSignificantValueDigits + "f %2.12f %10d %14.2f\n"; lastLinePercentileFormatString = "%12." + numberOfSignificantValueDigits + "f %2.12f %10d\n"; } while (iterator.hasNext()) { HistogramIterationValue iterationValue = iterator.next(); if (iterationValue.getPercentileLevelIteratedTo() != 100.0D) { printStream.format(Locale.US, percentileFormatString, iterationValue.getValueIteratedTo() / outputValueUnitScalingRatio, iterationValue.getPercentileLevelIteratedTo()/100.0D, iterationValue.getTotalCountToThisValue(), 1/(1.0D - (iterationValue.getPercentileLevelIteratedTo()/100.0D)) ); } else { printStream.format(Locale.US, lastLinePercentileFormatString, iterationValue.getValueIteratedTo() / outputValueUnitScalingRatio, iterationValue.getPercentileLevelIteratedTo()/100.0D, iterationValue.getTotalCountToThisValue()); } } if (!useCsvFormat) { // Calculate and output mean and std. deviation. // Note: mean/std. deviation numbers are very often completely irrelevant when // data is extremely non-normal in distribution (e.g. in cases of strong multi-modal // response time distribution associated with GC pauses). However, reporting these numbers // can be very useful for contrasting with the detailed percentile distribution // reported by outputPercentileDistribution(). It is not at all surprising to find // percentile distributions where results fall many tens or even hundreds of standard // deviations away from the mean - such results simply indicate that the data sampled // exhibits a very non-normal distribution, highlighting situations for which the std. // deviation metric is a useless indicator. // double mean = getMean() / outputValueUnitScalingRatio; double std_deviation = getStdDeviation() / outputValueUnitScalingRatio; printStream.format(Locale.US, "#[Mean = %12." + numberOfSignificantValueDigits + "f, StdDeviation = %12." + numberOfSignificantValueDigits +"f]\n", mean, std_deviation); printStream.format(Locale.US, "#[Max = %12." + numberOfSignificantValueDigits + "f, Total count = %12d]\n", getMaxValue() / outputValueUnitScalingRatio, getTotalCount()); printStream.format(Locale.US, "#[Buckets = %12d, SubBuckets = %12d]\n", bucketCount, subBucketCount); } } // // // // Serialization support: // // // private static final long serialVersionUID = 0x1c849302; private void writeObject(final ObjectOutputStream o) throws IOException { o.writeLong(lowestDiscernibleValue); o.writeLong(highestTrackableValue); o.writeInt(numberOfSignificantValueDigits); o.writeInt(getNormalizingIndexOffset()); o.writeDouble(integerToDoubleValueConversionRatio); o.writeLong(getTotalCount()); // Max Value is added to the serialized form because establishing max via scanning is "harder" during // deserialization, as the counts array is not available at the subclass deserializing level, and we don't // really want to have each subclass establish max on it's own... o.writeLong(maxValue); o.writeLong(minNonZeroValue); o.writeLong(startTimeStampMsec); o.writeLong(endTimeStampMsec); o.writeBoolean(autoResize); o.writeInt(wordSizeInBytes); } private void readObject(final ObjectInputStream o) throws IOException, ClassNotFoundException { final long lowestDiscernibleValue = o.readLong(); final long highestTrackableValue = o.readLong(); final int numberOfSignificantValueDigits = o.readInt(); final int normalizingIndexOffset = o.readInt(); final double integerToDoubleValueConversionRatio = o.readDouble(); final long indicatedTotalCount = o.readLong(); final long indicatedMaxValue = o.readLong(); final long indicatedMinNonZeroValue = o.readLong(); final long indicatedStartTimeStampMsec = o.readLong(); final long indicatedEndTimeStampMsec = o.readLong(); final boolean indicatedAutoResize = o.readBoolean(); final int indicatedwordSizeInBytes = o.readInt(); init(lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits, integerToDoubleValueConversionRatio, normalizingIndexOffset); // Set internalTrackingValues (can't establish them from array yet, because it's not yet read...) setTotalCount(indicatedTotalCount); maxValue = indicatedMaxValue; minNonZeroValue = indicatedMinNonZeroValue; startTimeStampMsec = indicatedStartTimeStampMsec; endTimeStampMsec = indicatedEndTimeStampMsec; autoResize = indicatedAutoResize; wordSizeInBytes = indicatedwordSizeInBytes; } // // // // Encoding/Decoding support: // // // /** * Get the capacity needed to encode this histogram into a ByteBuffer * @return the capacity needed to encode this histogram into a ByteBuffer */ @Override public int getNeededByteBufferCapacity() { return getNeededByteBufferCapacity(countsArrayLength); } private static final int ENCODING_HEADER_SIZE = 40; private static final int V0_ENCODING_HEADER_SIZE = 32; int getNeededByteBufferCapacity(final int relevantLength) { return getNeededPayloadByteBufferCapacity(relevantLength) + ENCODING_HEADER_SIZE; } int getNeededPayloadByteBufferCapacity(final int relevantLength) { return (relevantLength * V2maxWordSizeInBytes); } int getNeededV0PayloadByteBufferCapacity(final int relevantLength) { return (relevantLength * wordSizeInBytes); } abstract void fillCountsArrayFromBuffer(ByteBuffer buffer, int length); private static final int V0EncodingCookieBase = 0x1c849308; private static final int V0CompressedEncodingCookieBase = 0x1c849309; private static final int V1EncodingCookieBase = 0x1c849301; private static final int V1CompressedEncodingCookieBase = 0x1c849302; private static final int V2EncodingCookieBase = 0x1c849303; private static final int V2CompressedEncodingCookieBase = 0x1c849304; private static final int V2maxWordSizeInBytes = 9; // LEB128-64b9B + ZigZag require up to 9 bytes per word private static final int encodingCookieBase = V2EncodingCookieBase; private static final int compressedEncodingCookieBase = V2CompressedEncodingCookieBase; private int getEncodingCookie() { return encodingCookieBase | 0x10; // LSBit of wordsize byte indicates TLZE Encoding } private int getCompressedEncodingCookie() { return compressedEncodingCookieBase | 0x10; // LSBit of wordsize byte indicates TLZE Encoding } private static int getCookieBase(final int cookie) { return (cookie & ~0xf0); } private static int getWordSizeInBytesFromCookie(final int cookie) { if ((getCookieBase(cookie) == V2EncodingCookieBase) || (getCookieBase(cookie) == V2CompressedEncodingCookieBase)) { return V2maxWordSizeInBytes; } int sizeByte = (cookie & 0xf0) >> 4; return sizeByte & 0xe; } /** * Encode this histogram into a ByteBuffer * @param buffer The buffer to encode into * @return The number of bytes written to the buffer */ synchronized public int encodeIntoByteBuffer(final ByteBuffer buffer) { final long maxValue = getMaxValue(); final int relevantLength = countsArrayIndex(maxValue) + 1; if (buffer.capacity() < getNeededByteBufferCapacity(relevantLength)) { throw new ArrayIndexOutOfBoundsException("buffer does not have capacity for " + getNeededByteBufferCapacity(relevantLength) + " bytes"); } int initialPosition = buffer.position(); buffer.putInt(getEncodingCookie()); buffer.putInt(0); // Placeholder for payload length in bytes. buffer.putInt(getNormalizingIndexOffset()); buffer.putInt(numberOfSignificantValueDigits); buffer.putLong(lowestDiscernibleValue); buffer.putLong(highestTrackableValue); buffer.putDouble(getIntegerToDoubleValueConversionRatio()); int payloadStartPosition = buffer.position(); fillBufferFromCountsArray(buffer); buffer.putInt(initialPosition + 4, buffer.position() - payloadStartPosition); // Record the payload length return buffer.position() - initialPosition; } /** * Encode this histogram in compressed form into a byte array * @param targetBuffer The buffer to encode into * @param compressionLevel Compression level (for java.util.zip.Deflater). * @return The number of bytes written to the buffer */ @Override synchronized public int encodeIntoCompressedByteBuffer( final ByteBuffer targetBuffer, final int compressionLevel) { int neededCapacity = getNeededByteBufferCapacity(countsArrayLength); if (intermediateUncompressedByteBuffer == null || intermediateUncompressedByteBuffer.capacity() < neededCapacity) { intermediateUncompressedByteBuffer = ByteBuffer.allocate(neededCapacity).order(BIG_ENDIAN); } intermediateUncompressedByteBuffer.clear(); int initialTargetPosition = targetBuffer.position(); final int uncompressedLength = encodeIntoByteBuffer(intermediateUncompressedByteBuffer); targetBuffer.putInt(getCompressedEncodingCookie()); targetBuffer.putInt(0); // Placeholder for compressed contents length Deflater compressor = new Deflater(compressionLevel); compressor.setInput(intermediateUncompressedByteBuffer.array(), 0, uncompressedLength); compressor.finish(); byte[] targetArray; if (targetBuffer.hasArray()) { targetArray = targetBuffer.array(); } else { if (intermediateUncompressedByteArray == null || intermediateUncompressedByteArray.length < targetBuffer.capacity()) { intermediateUncompressedByteArray = new byte[targetBuffer.capacity()]; } targetArray = intermediateUncompressedByteArray; } int compressedTargetOffset = initialTargetPosition + 8; int compressedDataLength = compressor.deflate( targetArray, compressedTargetOffset, targetArray.length - compressedTargetOffset ); compressor.end(); if (!targetBuffer.hasArray()) { targetBuffer.put(targetArray, compressedTargetOffset, compressedDataLength); } targetBuffer.putInt(initialTargetPosition + 4, compressedDataLength); // Record the compressed length int bytesWritten = compressedDataLength + 8; targetBuffer.position(initialTargetPosition + bytesWritten); return bytesWritten; } /** * Encode this histogram in compressed form into a byte array * @param targetBuffer The buffer to encode into * @return The number of bytes written to the array */ public int encodeIntoCompressedByteBuffer(final ByteBuffer targetBuffer) { return encodeIntoCompressedByteBuffer(targetBuffer, Deflater.DEFAULT_COMPRESSION); } private static final Class[] constructorArgsTypes = {Long.TYPE, Long.TYPE, Integer.TYPE}; static T decodeFromByteBuffer( final ByteBuffer buffer, final Class histogramClass, final long minBarForHighestTrackableValue) { try { return decodeFromByteBuffer(buffer, histogramClass, minBarForHighestTrackableValue, null); } catch (DataFormatException ex) { throw new RuntimeException(ex); } } private static T decodeFromByteBuffer( final ByteBuffer buffer, final Class histogramClass, final long minBarForHighestTrackableValue, final Inflater decompressor) throws DataFormatException { final int cookie = buffer.getInt(); final int payloadLengthInBytes; final int normalizingIndexOffset; final int numberOfSignificantValueDigits; final long lowestTrackableUnitValue; long highestTrackableValue; final double integerToDoubleValueConversionRatio; if ((getCookieBase(cookie) == encodingCookieBase) || (getCookieBase(cookie) == V1EncodingCookieBase)) { if (getCookieBase(cookie) == V2EncodingCookieBase) { if (getWordSizeInBytesFromCookie(cookie) != V2maxWordSizeInBytes) { throw new IllegalArgumentException( "The buffer does not contain a Histogram (no valid cookie found)"); } } payloadLengthInBytes = buffer.getInt(); normalizingIndexOffset = buffer.getInt(); numberOfSignificantValueDigits = buffer.getInt(); lowestTrackableUnitValue = buffer.getLong(); highestTrackableValue = buffer.getLong(); integerToDoubleValueConversionRatio = buffer.getDouble(); } else if (getCookieBase(cookie) == V0EncodingCookieBase) { numberOfSignificantValueDigits = buffer.getInt(); lowestTrackableUnitValue = buffer.getLong(); highestTrackableValue = buffer.getLong(); buffer.getLong(); // Discard totalCount field in V0 header. payloadLengthInBytes = Integer.MAX_VALUE; integerToDoubleValueConversionRatio = 1.0; normalizingIndexOffset = 0; } else { throw new IllegalArgumentException("The buffer does not contain a Histogram (no valid cookie found)"); } highestTrackableValue = Math.max(highestTrackableValue, minBarForHighestTrackableValue); T histogram; // Construct histogram: try { @SuppressWarnings("unchecked") Constructor constructor = histogramClass.getConstructor(constructorArgsTypes); histogram = constructor.newInstance(lowestTrackableUnitValue, highestTrackableValue, numberOfSignificantValueDigits); histogram.setIntegerToDoubleValueConversionRatio(integerToDoubleValueConversionRatio); histogram.setNormalizingIndexOffset(normalizingIndexOffset); } catch (IllegalAccessException ex) { throw new IllegalArgumentException(ex); } catch (NoSuchMethodException ex) { throw new IllegalArgumentException(ex); } catch (InstantiationException ex) { throw new IllegalArgumentException(ex); } catch (InvocationTargetException ex) { throw new IllegalArgumentException(ex); } ByteBuffer payLoadSourceBuffer; final int expectedCapacity = Math.min( histogram.getNeededV0PayloadByteBufferCapacity(histogram.countsArrayLength), payloadLengthInBytes ); if (decompressor == null) { // No compressed source buffer. Payload is in buffer, after header. if (expectedCapacity > buffer.remaining()) { throw new IllegalArgumentException("The buffer does not contain the full Histogram payload"); } payLoadSourceBuffer = buffer; } else { // Compressed source buffer. Payload needs to be decoded from there. payLoadSourceBuffer = ByteBuffer.allocate(expectedCapacity).order(BIG_ENDIAN); int decompressedByteCount = decompressor.inflate(payLoadSourceBuffer.array()); if ((payloadLengthInBytes != Integer.MAX_VALUE) && (decompressedByteCount < payloadLengthInBytes)) { throw new IllegalArgumentException("The buffer does not contain the indicated payload amount"); } } int filledLength = ((AbstractHistogram) histogram).fillCountsArrayFromSourceBuffer( payLoadSourceBuffer, expectedCapacity, getWordSizeInBytesFromCookie(cookie)); histogram.establishInternalTackingValues(filledLength); return histogram; } private int fillCountsArrayFromSourceBuffer(ByteBuffer sourceBuffer, int lengthInBytes, int wordSizeInBytes) { if ((wordSizeInBytes != 2) && (wordSizeInBytes != 4) && (wordSizeInBytes != 8) && (wordSizeInBytes != V2maxWordSizeInBytes)) { throw new IllegalArgumentException("word size must be 2, 4, 8, or V2maxWordSizeInBytes ("+ V2maxWordSizeInBytes + ") bytes"); } final long maxAllowableCountInHistigram = ((this.wordSizeInBytes == 2) ? Short.MAX_VALUE : ((this.wordSizeInBytes == 4) ? Integer.MAX_VALUE : Long.MAX_VALUE) ); int dstIndex = 0; int endPosition = sourceBuffer.position() + lengthInBytes; while (sourceBuffer.position() < endPosition) { long count; int zerosCount = 0; if (wordSizeInBytes == V2maxWordSizeInBytes) { // V2 encoding format uses a long encoded in a ZigZag LEB128 format (up to V2maxWordSizeInBytes): count = ZigZagEncoding.getLong(sourceBuffer); if (count < 0) { long zc = -count; if (zc > Integer.MAX_VALUE) { throw new IllegalArgumentException( "An encoded zero count of > Integer.MAX_VALUE was encountered in the source"); } zerosCount = (int) zc; } } else { // decoding V1 and V0 encoding formats depends on indicated word size: count = ((wordSizeInBytes == 2) ? sourceBuffer.getShort() : ((wordSizeInBytes == 4) ? sourceBuffer.getInt() : sourceBuffer.getLong() ) ); } if (count > maxAllowableCountInHistigram) { throw new IllegalArgumentException( "An encoded count (" + count + ") does not fit in the Histogram's (" + this.wordSizeInBytes + " bytes) was encountered in the source"); } if (zerosCount > 0) { dstIndex += zerosCount; // No need to set zeros in array. Just skip them. } else { setCountAtIndex(dstIndex++, count); } } return dstIndex; // this is the destination length } synchronized void fillBufferFromCountsArray(ByteBuffer buffer) { final int countsLimit = countsArrayIndex(maxValue) + 1; int srcIndex = 0; while (srcIndex < countsLimit) { // V2 encoding format uses a ZigZag LEB128-64b9B encoded long. Positive values are counts, // while negative values indicate a repeat zero counts. long count = getCountAtIndex(srcIndex++); if (count < 0) { throw new RuntimeException("Cannot encode histogram containing negative counts (" + count + ") at index " + srcIndex + ", corresponding the value range [" + lowestEquivalentValue(valueFromIndex(srcIndex)) + "," + nextNonEquivalentValue(valueFromIndex(srcIndex)) + ")"); } // Count trailing 0s (which follow this count): long zerosCount = 0; if (count == 0) { zerosCount = 1; while ((srcIndex < countsLimit) && (getCountAtIndex(srcIndex) == 0)) { zerosCount++; srcIndex++; } } if (zerosCount > 1) { ZigZagEncoding.putLong(buffer, -zerosCount); } else { ZigZagEncoding.putLong(buffer, count); } } } static T decodeFromCompressedByteBuffer( final ByteBuffer buffer, final Class histogramClass, final long minBarForHighestTrackableValue) throws DataFormatException { int initialTargetPosition = buffer.position(); final int cookie = buffer.getInt(); final int headerSize; if ((getCookieBase(cookie) == compressedEncodingCookieBase) || (getCookieBase(cookie) == V1CompressedEncodingCookieBase)) { headerSize = ENCODING_HEADER_SIZE; } else if (getCookieBase(cookie) == V0CompressedEncodingCookieBase) { headerSize = V0_ENCODING_HEADER_SIZE; } else { throw new IllegalArgumentException("The buffer does not contain a compressed Histogram"); } final int lengthOfCompressedContents = buffer.getInt(); final Inflater decompressor = new Inflater(); if (buffer.hasArray()) { decompressor.setInput(buffer.array(), initialTargetPosition + 8, lengthOfCompressedContents); } else { byte[] compressedContents = new byte[lengthOfCompressedContents]; buffer.get(compressedContents); decompressor.setInput(compressedContents); } final ByteBuffer headerBuffer = ByteBuffer.allocate(headerSize).order(BIG_ENDIAN); decompressor.inflate(headerBuffer.array()); T histogram = decodeFromByteBuffer( headerBuffer, histogramClass, minBarForHighestTrackableValue, decompressor); decompressor.end(); return histogram; } // // // // Internal helper methods: // // // void establishInternalTackingValues() { establishInternalTackingValues(countsArrayLength); } void establishInternalTackingValues(final int lengthToCover) { resetMaxValue(0); resetMinNonZeroValue(Long.MAX_VALUE); int maxIndex = -1; int minNonZeroIndex = -1; long observedTotalCount = 0; for (int index = 0; index < lengthToCover; index++) { long countAtIndex; if ((countAtIndex = getCountAtIndex(index)) > 0) { observedTotalCount += countAtIndex; maxIndex = index; if ((minNonZeroIndex == -1) && (index != 0)) { minNonZeroIndex = index; } } } if (maxIndex >= 0) { updatedMaxValue(highestEquivalentValue(valueFromIndex(maxIndex))); } if (minNonZeroIndex >= 0) { updateMinNonZeroValue(valueFromIndex(minNonZeroIndex)); } setTotalCount(observedTotalCount); } int getBucketsNeededToCoverValue(final long value) { // Shift won't overflow because subBucketMagnitude + unitMagnitude <= 62. // the k'th bucket can express from 0 * 2^k to subBucketCount * 2^k in units of 2^k long smallestUntrackableValue = ((long) subBucketCount) << unitMagnitude; // always have at least 1 bucket int bucketsNeeded = 1; while (smallestUntrackableValue <= value) { if (smallestUntrackableValue > (Long.MAX_VALUE / 2)) { // next shift will overflow, meaning that bucket could represent values up to ones greater than // Long.MAX_VALUE, so it's the last bucket return bucketsNeeded + 1; } smallestUntrackableValue <<= 1; bucketsNeeded++; } return bucketsNeeded; } /** * If we have N such that subBucketCount * 2^N > max value, we need storage for N+1 buckets, each with enough * slots to hold the top half of the subBucketCount (the lower half is covered by previous buckets), and the +1 * being used for the lower half of the 0'th bucket. Or, equivalently, we need 1 more bucket to capture the max * value if we consider the sub-bucket length to be halved. */ int getLengthForNumberOfBuckets(final int numberOfBuckets) { final int lengthNeeded = (numberOfBuckets + 1) * (subBucketHalfCount); return lengthNeeded; } int countsArrayIndex(final long value) { if (value < 0) { throw new ArrayIndexOutOfBoundsException("Histogram recorded value cannot be negative."); } final int bucketIndex = getBucketIndex(value); final int subBucketIndex = getSubBucketIndex(value, bucketIndex); return countsArrayIndex(bucketIndex, subBucketIndex); } private int countsArrayIndex(final int bucketIndex, final int subBucketIndex) { assert(subBucketIndex < subBucketCount); assert(bucketIndex == 0 || (subBucketIndex >= subBucketHalfCount)); // Calculate the index for the first entry that will be used in the bucket (halfway through subBucketCount). // For bucketIndex 0, all subBucketCount entries may be used, but bucketBaseIndex is still set in the middle. final int bucketBaseIndex = (bucketIndex + 1) << subBucketHalfCountMagnitude; // Calculate the offset in the bucket. This subtraction will result in a positive value in all buckets except // the 0th bucket (since a value in that bucket may be less than half the bucket's 0 to subBucketCount range). // However, this works out since we give bucket 0 twice as much space. final int offsetInBucket = subBucketIndex - subBucketHalfCount; // The following is the equivalent of ((subBucketIndex - subBucketHalfCount) + bucketBaseIndex; return bucketBaseIndex + offsetInBucket; } /** * @return the lowest (and therefore highest precision) bucket index that can represent the value */ int getBucketIndex(final long value) { // Calculates the number of powers of two by which the value is greater than the biggest value that fits in // bucket 0. This is the bucket index since each successive bucket can hold a value 2x greater. // The mask maps small values to bucket 0. return leadingZeroCountBase - Long.numberOfLeadingZeros(value | subBucketMask); } int getSubBucketIndex(final long value, final int bucketIndex) { // For bucketIndex 0, this is just value, so it may be anywhere in 0 to subBucketCount. // For other bucketIndex, this will always end up in the top half of subBucketCount: assume that for some bucket // k > 0, this calculation will yield a value in the bottom half of 0 to subBucketCount. Then, because of how // buckets overlap, it would have also been in the top half of bucket k-1, and therefore would have // returned k-1 in getBucketIndex(). Since we would then shift it one fewer bits here, it would be twice as big, // and therefore in the top half of subBucketCount. return (int)(value >>> (bucketIndex + unitMagnitude)); } /** * @return The value `index - normalizingIndexOffset` modulo arrayLength (always nonnegative) */ int normalizeIndex(int index, int normalizingIndexOffset, int arrayLength) { if (normalizingIndexOffset == 0) { // Fastpath out of normalization. Keeps integer value histograms fast while allowing // others (like DoubleHistogram) to use normalization at a cost... return index; } if ((index > arrayLength) || (index < 0)) { throw new ArrayIndexOutOfBoundsException("index out of covered value range"); } int normalizedIndex = index - normalizingIndexOffset; // The following is the same as an unsigned remainder operation, as long as no double wrapping happens // (which shouldn't happen, as normalization is never supposed to wrap, since it would have overflowed // or underflowed before it did). This (the + and - tests) seems to be faster than a % op with a // correcting if < 0...: if (normalizedIndex < 0) { normalizedIndex += arrayLength; } else if (normalizedIndex >= arrayLength) { normalizedIndex -= arrayLength; } return normalizedIndex; } private long valueFromIndex(final int bucketIndex, final int subBucketIndex) { return ((long) subBucketIndex) << (bucketIndex + unitMagnitude); } final long valueFromIndex(final int index) { int bucketIndex = (index >> subBucketHalfCountMagnitude) - 1; int subBucketIndex = (index & (subBucketHalfCount - 1)) + subBucketHalfCount; if (bucketIndex < 0) { subBucketIndex -= subBucketHalfCount; bucketIndex = 0; } return valueFromIndex(bucketIndex, subBucketIndex); } static int numberOfSubbuckets(final int numberOfSignificantValueDigits) { final long largestValueWithSingleUnitResolution = 2 * (long) Math.pow(10, numberOfSignificantValueDigits); // We need to maintain power-of-two subBucketCount (for clean direct indexing) that is large enough to // provide unit resolution to at least largestValueWithSingleUnitResolution. So figure out // largestValueWithSingleUnitResolution's nearest power-of-two (rounded up), and use that: int subBucketCountMagnitude = (int) Math.ceil(Math.log(largestValueWithSingleUnitResolution)/Math.log(2)); int subBucketCount = (int) Math.pow(2, subBucketCountMagnitude); return subBucketCount; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy