All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.HdrHistogram.ConcurrentHistogram Maven / Gradle / Ivy

There is a newer version: 4.15.102
Show newest version
/**
 * Written by Gil Tene of Azul Systems, and released to the public domain,
 * as explained at http://creativecommons.org/publicdomain/zero/1.0/
 *
 * @author Gil Tene
 */

package org.HdrHistogram;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.nio.ByteBuffer;
import java.nio.LongBuffer;
import java.util.concurrent.atomic.AtomicLongArray;
import java.util.concurrent.atomic.AtomicLongFieldUpdater;
import java.util.zip.DataFormatException;

/**
 * 

An integer values High Dynamic Range (HDR) Histogram that supports safe concurrent recording operations.

* A ConcurrentHistogram guarantees lossless recording of values into the histogram even when the * histogram is updated by multiple threads, and supports auto-resize and shift operations that may * result from or occur concurrently with other recording operations. *

* It is important to note that concurrent recording, auto-sizing, and value shifting are the only thread-safe * behaviors provided by {@link ConcurrentHistogram}, and that it is not otherwise synchronized. Specifically, {@link * ConcurrentHistogram} provides no implicit synchronization that would prevent the contents of the histogram * from changing during queries, iterations, copies, or addition operations on the histogram. Callers wishing to make * potentially concurrent, multi-threaded updates that would safely work in the presence of queries, copies, or * additions of histogram objects should either take care to externally synchronize and/or order their access, * use the {@link SynchronizedHistogram} variant, or (recommended) use {@link Recorder} or * {@link SingleWriterRecorder} which are intended for this purpose. *

* Auto-resizing: When constructed with no specified value range range (or when auto-resize is turned on with {@link * Histogram#setAutoResize}) a {@link Histogram} will auto-resize its dynamic range to include recorded values as * they are encountered. Note that recording calls that cause auto-resizing may take longer to execute, as resizing * incurs allocation and copying of internal data structures. *

* See package description for {@link org.HdrHistogram} for details. */ public class ConcurrentHistogram extends Histogram { static final AtomicLongFieldUpdater totalCountUpdater = AtomicLongFieldUpdater.newUpdater(ConcurrentHistogram.class, "totalCount"); volatile long totalCount; volatile AtomicLongArrayWithNormalizingOffset activeCounts; volatile AtomicLongArrayWithNormalizingOffset inactiveCounts; transient WriterReaderPhaser wrp = new WriterReaderPhaser(); @Override void setIntegerToDoubleValueConversionRatio(final double integerToDoubleValueConversionRatio) { try { wrp.readerLock(); inactiveCounts.doubleToIntegerValueConversionRatio = 1.0 / integerToDoubleValueConversionRatio; // switch active and inactive: AtomicLongArrayWithNormalizingOffset tmp = activeCounts; activeCounts = inactiveCounts; inactiveCounts = tmp; wrp.flipPhase(); inactiveCounts.doubleToIntegerValueConversionRatio = 1.0 / integerToDoubleValueConversionRatio; // switch active and inactive again: tmp = activeCounts; activeCounts = inactiveCounts; inactiveCounts = tmp; wrp.flipPhase(); // At this point, both active and inactive have normalizingIndexOffset safely set, // and the switch in each was done without any writers using the wrong value in flight. } finally { wrp.readerUnlock(); } super.setIntegerToDoubleValueConversionRatio(integerToDoubleValueConversionRatio); } @Override long getCountAtIndex(final int index) { try { wrp.readerLock(); assert (countsArrayLength == activeCounts.length()); assert (countsArrayLength == inactiveCounts.length()); long activeCount = activeCounts.get( normalizeIndex(index, activeCounts.getNormalizingIndexOffset(), activeCounts.length())); long inactiveCount = inactiveCounts.get( normalizeIndex(index, inactiveCounts.getNormalizingIndexOffset(), inactiveCounts.length())); return activeCount + inactiveCount; } finally { wrp.readerUnlock(); } } @Override long getCountAtNormalizedIndex(final int index) { try { wrp.readerLock(); assert (countsArrayLength == activeCounts.length()); assert (countsArrayLength == inactiveCounts.length()); long activeCount = activeCounts.get(index); long inactiveCount = inactiveCounts.get(index); return activeCount + inactiveCount; } finally { wrp.readerUnlock(); } } @Override void incrementCountAtIndex(final int index) { long criticalValue = wrp.writerCriticalSectionEnter(); try { activeCounts.incrementAndGet( normalizeIndex(index, activeCounts.getNormalizingIndexOffset(), activeCounts.length())); } finally { wrp.writerCriticalSectionExit(criticalValue); } } @Override void addToCountAtIndex(final int index, final long value) { long criticalValue = wrp.writerCriticalSectionEnter(); try { activeCounts.addAndGet( normalizeIndex(index, activeCounts.getNormalizingIndexOffset(), activeCounts.length()), value); } finally { wrp.writerCriticalSectionExit(criticalValue); } } @Override void setCountAtIndex(final int index, final long value) { try { wrp.readerLock(); assert (countsArrayLength == activeCounts.length()); assert (countsArrayLength == inactiveCounts.length()); activeCounts.lazySet( normalizeIndex(index, activeCounts.getNormalizingIndexOffset(), activeCounts.length()), value); inactiveCounts.lazySet( normalizeIndex(index, inactiveCounts.getNormalizingIndexOffset(), inactiveCounts.length()), 0); } finally { wrp.readerUnlock(); } } @Override void setCountAtNormalizedIndex(final int index, final long value) { try { wrp.readerLock(); assert (countsArrayLength == activeCounts.length()); assert (countsArrayLength == inactiveCounts.length()); inactiveCounts.lazySet(index, value); activeCounts.lazySet(index, 0); } finally { wrp.readerUnlock(); } } @Override void recordConvertedDoubleValue(final double value) { long criticalValue = wrp.writerCriticalSectionEnter(); try { long integerValue = (long) (value * activeCounts.doubleToIntegerValueConversionRatio); int index = countsArrayIndex(integerValue); activeCounts.incrementAndGet( normalizeIndex(index, activeCounts.getNormalizingIndexOffset(), activeCounts.length())); updateMinAndMax(integerValue); incrementTotalCount(); } finally { wrp.writerCriticalSectionExit(criticalValue); } } @Override public void recordConvertedDoubleValueWithCount(final double value, final long count) throws ArrayIndexOutOfBoundsException { long criticalValue = wrp.writerCriticalSectionEnter(); try { long integerValue = (long) (value * activeCounts.doubleToIntegerValueConversionRatio); int index = countsArrayIndex(integerValue); activeCounts.addAndGet( normalizeIndex(index, activeCounts.getNormalizingIndexOffset(), activeCounts.length()), count); updateMinAndMax(integerValue); addToTotalCount(count); } finally { wrp.writerCriticalSectionExit(criticalValue); } } @Override int getNormalizingIndexOffset() { return activeCounts.getNormalizingIndexOffset(); } @Override void setNormalizingIndexOffset(final int normalizingIndexOffset) { setNormalizingIndexOffset(normalizingIndexOffset, 0, false, getIntegerToDoubleValueConversionRatio()); } private void setNormalizingIndexOffset( final int normalizingIndexOffset, final int shiftedAmount, final boolean lowestHalfBucketPopulated, final double newIntegerToDoubleValueConversionRatio) { try { wrp.readerLock(); assert (countsArrayLength == activeCounts.length()); assert (countsArrayLength == inactiveCounts.length()); assert (activeCounts.getNormalizingIndexOffset() == inactiveCounts.getNormalizingIndexOffset()); if (normalizingIndexOffset == activeCounts.getNormalizingIndexOffset()) { return; // Nothing to do. } // Save and clear the inactive 0 value count: int zeroIndex = normalizeIndex(0, inactiveCounts.getNormalizingIndexOffset(), inactiveCounts.length()); long inactiveZeroValueCount = inactiveCounts.get(zeroIndex); inactiveCounts.lazySet(zeroIndex, 0); // Change the normalizingIndexOffset on the current inactiveCounts: inactiveCounts.setNormalizingIndexOffset(normalizingIndexOffset); // Handle the inactive lowest half bucket: if ((shiftedAmount > 0) && lowestHalfBucketPopulated) { shiftLowestInactiveHalfBucketContentsLeft(shiftedAmount, zeroIndex); } // Restore the inactive 0 value count: zeroIndex = normalizeIndex(0, inactiveCounts.getNormalizingIndexOffset(), inactiveCounts.length()); inactiveCounts.lazySet(zeroIndex, inactiveZeroValueCount); inactiveCounts.doubleToIntegerValueConversionRatio = 1.0 / newIntegerToDoubleValueConversionRatio; // switch active and inactive: AtomicLongArrayWithNormalizingOffset tmp = activeCounts; activeCounts = inactiveCounts; inactiveCounts = tmp; wrp.flipPhase(); // Save and clear the newly inactive 0 value count: zeroIndex = normalizeIndex(0, inactiveCounts.getNormalizingIndexOffset(), inactiveCounts.length()); inactiveZeroValueCount = inactiveCounts.get(zeroIndex); inactiveCounts.lazySet(zeroIndex, 0); // Change the normalizingIndexOffset on the newly inactiveCounts: inactiveCounts.setNormalizingIndexOffset(normalizingIndexOffset); // Handle the newly inactive lowest half bucket: if ((shiftedAmount > 0) && lowestHalfBucketPopulated) { shiftLowestInactiveHalfBucketContentsLeft(shiftedAmount, zeroIndex); } // Restore the newly inactive 0 value count: zeroIndex = normalizeIndex(0, inactiveCounts.getNormalizingIndexOffset(), inactiveCounts.length()); inactiveCounts.lazySet(zeroIndex, inactiveZeroValueCount); inactiveCounts.doubleToIntegerValueConversionRatio = 1.0 / newIntegerToDoubleValueConversionRatio; // switch active and inactive again: tmp = activeCounts; activeCounts = inactiveCounts; inactiveCounts = tmp; wrp.flipPhase(); // At this point, both active and inactive have normalizingIndexOffset safely set, // and the switch in each was done without any writers using the wrong value in flight. } finally { wrp.readerUnlock(); } } private void shiftLowestInactiveHalfBucketContentsLeft(final int shiftAmount, final int preShiftZeroIndex) { final int numberOfBinaryOrdersOfMagnitude = shiftAmount >> subBucketHalfCountMagnitude; // The lowest inactive half-bucket (not including the 0 value) is special: unlike all other half // buckets, the lowest half bucket values cannot be scaled by simply changing the // normalizing offset. Instead, they must be individually re-recorded at the new // scale, and cleared from the current one. // // We know that all half buckets "below" the current lowest one are full of 0s, because // we would have overflowed otherwise. So we need to shift the values in the current // lowest half bucket into that range (including the current lowest half bucket itself). // Iterating up from the lowermost non-zero "from slot" and copying values to the newly // scaled "to slot" (and then zeroing the "from slot"), will work in a single pass, // because the scale "to slot" index will always be a lower index than its or any // preceding non-scaled "from slot" index: // // (Note that we specifically avoid slot 0, as it is directly handled in the outer case) for (int fromIndex = 1; fromIndex < subBucketHalfCount; fromIndex++) { long toValue = valueFromIndex(fromIndex) << numberOfBinaryOrdersOfMagnitude; int toIndex = countsArrayIndex(toValue); int normalizedToIndex = normalizeIndex(toIndex, inactiveCounts.getNormalizingIndexOffset(), inactiveCounts.length()); long countAtFromIndex = inactiveCounts.get(fromIndex + preShiftZeroIndex); inactiveCounts.lazySet(normalizedToIndex, countAtFromIndex); inactiveCounts.lazySet(fromIndex + preShiftZeroIndex, 0); } // Note that the above loop only creates O(N) work for histograms that have values in // the lowest half-bucket (excluding the 0 value). Histograms that never have values // there (e.g. all integer value histograms used as internal storage in DoubleHistograms) // will never loop, and their shifts will remain O(1). } @Override void shiftNormalizingIndexByOffset(final int offsetToAdd, final boolean lowestHalfBucketPopulated, final double newIntegerToDoubleValueConversionRatio) { try { wrp.readerLock(); assert (countsArrayLength == activeCounts.length()); assert (countsArrayLength == inactiveCounts.length()); int newNormalizingIndexOffset = getNormalizingIndexOffset() + offsetToAdd; setNormalizingIndexOffset(newNormalizingIndexOffset, offsetToAdd, lowestHalfBucketPopulated, newIntegerToDoubleValueConversionRatio ); } finally { wrp.readerUnlock(); } } @Override void resize(final long newHighestTrackableValue) { try { wrp.readerLock(); assert (countsArrayLength == activeCounts.length()); assert (countsArrayLength == inactiveCounts.length()); int newArrayLength = determineArrayLengthNeeded(newHighestTrackableValue); int countsDelta = newArrayLength - countsArrayLength; if (countsDelta <= 0) { // This resize need was already covered by a concurrent resize op. return; } // Allocate both counts arrays here, so if one allocation fails, neither will "take": AtomicLongArrayWithNormalizingOffset newInactiveCounts1 = new AtomicLongArrayWithNormalizingOffset( newArrayLength, inactiveCounts.getNormalizingIndexOffset() ); AtomicLongArrayWithNormalizingOffset newInactiveCounts2 = new AtomicLongArrayWithNormalizingOffset( newArrayLength, activeCounts.getNormalizingIndexOffset() ); // Resize the current inactiveCounts: AtomicLongArrayWithNormalizingOffset oldInactiveCounts = inactiveCounts; inactiveCounts = newInactiveCounts1; // Copy inactive contents to newly sized inactiveCounts: copyInactiveCountsContentsOnResize(oldInactiveCounts, countsDelta); // switch active and inactive: AtomicLongArrayWithNormalizingOffset tmp = activeCounts; activeCounts = inactiveCounts; inactiveCounts = tmp; wrp.flipPhase(); // Resize the newly inactiveCounts: oldInactiveCounts = inactiveCounts; inactiveCounts = newInactiveCounts2; // Copy inactive contents to newly sized inactiveCounts: copyInactiveCountsContentsOnResize(oldInactiveCounts, countsDelta); // switch active and inactive again: tmp = activeCounts; activeCounts = inactiveCounts; inactiveCounts = tmp; wrp.flipPhase(); // At this point, both active and inactive have been safely resized, // and the switch in each was done without any writers modifying it in flight. // We resized things. We can now make the historam establish size accordingly for future recordings: establishSize(newHighestTrackableValue); assert (countsArrayLength == activeCounts.length()); assert (countsArrayLength == inactiveCounts.length()); } finally { wrp.readerUnlock(); } } private void copyInactiveCountsContentsOnResize( AtomicLongArrayWithNormalizingOffset oldInactiveCounts, int countsDelta) { int oldNormalizedZeroIndex = normalizeIndex(0, oldInactiveCounts.getNormalizingIndexOffset(), oldInactiveCounts.length()); // Copy old inactive contents to (current) newly sized inactiveCounts: for (int i = 0; i < oldInactiveCounts.length(); i++) { inactiveCounts.lazySet(i, oldInactiveCounts.get(i)); } if (oldNormalizedZeroIndex != 0) { // We need to shift the stuff from the zero index and up to the end of the array: int newNormalizedZeroIndex = oldNormalizedZeroIndex + countsDelta; int lengthToCopy = (inactiveCounts.length() - countsDelta) - oldNormalizedZeroIndex; int src, dst; for (src = oldNormalizedZeroIndex, dst = newNormalizedZeroIndex; src < oldNormalizedZeroIndex + lengthToCopy; src++, dst++) { inactiveCounts.lazySet(dst, oldInactiveCounts.get(src)); } for (dst = oldNormalizedZeroIndex; dst < newNormalizedZeroIndex; dst++) { inactiveCounts.lazySet(dst, 0); } } } @Override public void setAutoResize(final boolean autoResize) { this.autoResize = true; } @Override void clearCounts() { try { wrp.readerLock(); assert (countsArrayLength == activeCounts.length()); assert (countsArrayLength == inactiveCounts.length()); for (int i = 0; i < activeCounts.length(); i++) { activeCounts.lazySet(i, 0); inactiveCounts.lazySet(i, 0); } totalCountUpdater.set(this, 0); } finally { wrp.readerUnlock(); } } @Override public ConcurrentHistogram copy() { ConcurrentHistogram copy = new ConcurrentHistogram(this); copy.add(this); return copy; } @Override public ConcurrentHistogram copyCorrectedForCoordinatedOmission(final long expectedIntervalBetweenValueSamples) { ConcurrentHistogram toHistogram = new ConcurrentHistogram(this); toHistogram.addWhileCorrectingForCoordinatedOmission(this, expectedIntervalBetweenValueSamples); return toHistogram; } @Override public long getTotalCount() { return totalCountUpdater.get(this); } @Override void setTotalCount(final long totalCount) { totalCountUpdater.set(this, totalCount); } @Override void incrementTotalCount() { totalCountUpdater.incrementAndGet(this); } @Override void addToTotalCount(final long value) { totalCountUpdater.addAndGet(this, value); } @Override int _getEstimatedFootprintInBytes() { return (512 + (2 * 8 * activeCounts.length())); } /** * Construct an auto-resizing ConcurrentHistogram with a lowest discernible value of 1 and an auto-adjusting * highestTrackableValue. Can auto-resize up to track values up to (Long.MAX_VALUE / 2). * * @param numberOfSignificantValueDigits Specifies the precision to use. This is the number of significant * decimal digits to which the histogram will maintain value resolution * and separation. Must be a non-negative integer between 0 and 5. */ public ConcurrentHistogram(final int numberOfSignificantValueDigits) { this(1, 2, numberOfSignificantValueDigits); setAutoResize(true); } /** * Construct a ConcurrentHistogram given the Highest value to be tracked and a number of significant decimal digits. The * histogram will be constructed to implicitly track (distinguish from 0) values as low as 1. * * @param highestTrackableValue The highest value to be tracked by the histogram. Must be a positive * integer that is {@literal >=} 2. * @param numberOfSignificantValueDigits Specifies the precision to use. This is the number of significant * decimal digits to which the histogram will maintain value resolution * and separation. Must be a non-negative integer between 0 and 5. */ public ConcurrentHistogram(final long highestTrackableValue, final int numberOfSignificantValueDigits) { this(1, highestTrackableValue, numberOfSignificantValueDigits); } /** * Construct a ConcurrentHistogram given the Lowest and Highest values to be tracked and a number of significant * decimal digits. Providing a lowestDiscernibleValue is useful is situations where the units used * for the histogram's values are much smaller that the minimal accuracy required. E.g. when tracking * time values stated in nanosecond units, where the minimal accuracy required is a microsecond, the * proper value for lowestDiscernibleValue would be 1000. * * @param lowestDiscernibleValue The lowest value that can be tracked (distinguished from 0) by the histogram. * Must be a positive integer that is {@literal >=} 1. May be internally rounded * down to nearest power of 2. * @param highestTrackableValue The highest value to be tracked by the histogram. Must be a positive * integer that is {@literal >=} (2 * lowestDiscernibleValue). * @param numberOfSignificantValueDigits Specifies the precision to use. This is the number of significant * decimal digits to which the histogram will maintain value resolution * and separation. Must be a non-negative integer between 0 and 5. */ public ConcurrentHistogram(final long lowestDiscernibleValue, final long highestTrackableValue, final int numberOfSignificantValueDigits) { super(lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits, false); activeCounts = new AtomicLongArrayWithNormalizingOffset(countsArrayLength, 0); inactiveCounts = new AtomicLongArrayWithNormalizingOffset(countsArrayLength, 0); wordSizeInBytes = 8; } /** * Construct a histogram with the same range settings as a given source histogram, * duplicating the source's start/end timestamps (but NOT it's contents) * @param source The source histogram to duplicate */ public ConcurrentHistogram(final AbstractHistogram source) { super(source, false); activeCounts = new AtomicLongArrayWithNormalizingOffset(countsArrayLength, 0); inactiveCounts = new AtomicLongArrayWithNormalizingOffset(countsArrayLength, 0); wordSizeInBytes = 8; } /** * Construct a new histogram by decoding it from a ByteBuffer. * @param buffer The buffer to decode from * @param minBarForHighestTrackableValue Force highestTrackableValue to be set at least this high * @return The newly constructed histogram */ public static ConcurrentHistogram decodeFromByteBuffer(final ByteBuffer buffer, final long minBarForHighestTrackableValue) { return (ConcurrentHistogram) decodeFromByteBuffer(buffer, ConcurrentHistogram.class, minBarForHighestTrackableValue); } /** * Construct a new histogram by decoding it from a compressed form in a ByteBuffer. * @param buffer The buffer to decode from * @param minBarForHighestTrackableValue Force highestTrackableValue to be set at least this high * @return The newly constructed histogram * @throws java.util.zip.DataFormatException on error parsing/decompressing the buffer */ public static ConcurrentHistogram decodeFromCompressedByteBuffer(final ByteBuffer buffer, final long minBarForHighestTrackableValue) throws DataFormatException { return (ConcurrentHistogram) decodeFromCompressedByteBuffer(buffer, ConcurrentHistogram.class, minBarForHighestTrackableValue); } private void readObject(final ObjectInputStream o) throws IOException, ClassNotFoundException { o.defaultReadObject(); wrp = new WriterReaderPhaser(); } @Override synchronized void fillCountsArrayFromBuffer(final ByteBuffer buffer, final int length) { LongBuffer logbuffer = buffer.asLongBuffer(); for (int i = 0; i < length; i++) { inactiveCounts.lazySet(i, logbuffer.get()); activeCounts.lazySet(i, 0); } } @Override synchronized void fillBufferFromCountsArray(final ByteBuffer buffer) { try { wrp.readerLock(); super.fillBufferFromCountsArray(buffer); } finally { wrp.readerUnlock(); } } static class AtomicLongArrayWithNormalizingOffset extends AtomicLongArray { private int normalizingIndexOffset; private double doubleToIntegerValueConversionRatio; AtomicLongArrayWithNormalizingOffset(int length, int normalizingIndexOffset) { super(length); this.normalizingIndexOffset = normalizingIndexOffset; } public int getNormalizingIndexOffset() { return normalizingIndexOffset; } public void setNormalizingIndexOffset(int normalizingIndexOffset) { this.normalizingIndexOffset = normalizingIndexOffset; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy