org.apache.commons.math3.analysis.interpolation.SmoothingPolynomialBicubicSplineInterpolator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of driver-cql-shaded Show documentation
Show all versions of driver-cql-shaded Show documentation
A Shaded CQL ActivityType driver for http://nosqlbench.io/
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.interpolation;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.Precision;
import org.apache.commons.math3.optim.nonlinear.vector.jacobian.GaussNewtonOptimizer;
import org.apache.commons.math3.fitting.PolynomialFitter;
import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math3.optim.SimpleVectorValueChecker;
/**
* Generates a bicubic interpolation function.
* Prior to generating the interpolating function, the input is smoothed using
* polynomial fitting.
*
* @since 2.2
* @deprecated To be removed in 4.0 (see MATH-1166).
*/
@Deprecated
public class SmoothingPolynomialBicubicSplineInterpolator
extends BicubicSplineInterpolator {
/** Fitter for x. */
private final PolynomialFitter xFitter;
/** Degree of the fitting polynomial. */
private final int xDegree;
/** Fitter for y. */
private final PolynomialFitter yFitter;
/** Degree of the fitting polynomial. */
private final int yDegree;
/**
* Default constructor. The degree of the fitting polynomials is set to 3.
*/
public SmoothingPolynomialBicubicSplineInterpolator() {
this(3);
}
/**
* @param degree Degree of the polynomial fitting functions.
* @exception NotPositiveException if degree is not positive
*/
public SmoothingPolynomialBicubicSplineInterpolator(int degree)
throws NotPositiveException {
this(degree, degree);
}
/**
* @param xDegree Degree of the polynomial fitting functions along the
* x-dimension.
* @param yDegree Degree of the polynomial fitting functions along the
* y-dimension.
* @exception NotPositiveException if degrees are not positive
*/
public SmoothingPolynomialBicubicSplineInterpolator(int xDegree, int yDegree)
throws NotPositiveException {
if (xDegree < 0) {
throw new NotPositiveException(xDegree);
}
if (yDegree < 0) {
throw new NotPositiveException(yDegree);
}
this.xDegree = xDegree;
this.yDegree = yDegree;
final double safeFactor = 1e2;
final SimpleVectorValueChecker checker
= new SimpleVectorValueChecker(safeFactor * Precision.EPSILON,
safeFactor * Precision.SAFE_MIN);
xFitter = new PolynomialFitter(new GaussNewtonOptimizer(false, checker));
yFitter = new PolynomialFitter(new GaussNewtonOptimizer(false, checker));
}
/**
* {@inheritDoc}
*/
@Override
public BicubicSplineInterpolatingFunction interpolate(final double[] xval,
final double[] yval,
final double[][] fval)
throws NoDataException, NullArgumentException,
DimensionMismatchException, NonMonotonicSequenceException {
if (xval.length == 0 || yval.length == 0 || fval.length == 0) {
throw new NoDataException();
}
if (xval.length != fval.length) {
throw new DimensionMismatchException(xval.length, fval.length);
}
final int xLen = xval.length;
final int yLen = yval.length;
for (int i = 0; i < xLen; i++) {
if (fval[i].length != yLen) {
throw new DimensionMismatchException(fval[i].length, yLen);
}
}
MathArrays.checkOrder(xval);
MathArrays.checkOrder(yval);
// For each line y[j] (0 <= j < yLen), construct a polynomial, with
// respect to variable x, fitting array fval[][j]
final PolynomialFunction[] yPolyX = new PolynomialFunction[yLen];
for (int j = 0; j < yLen; j++) {
xFitter.clearObservations();
for (int i = 0; i < xLen; i++) {
xFitter.addObservedPoint(1, xval[i], fval[i][j]);
}
// Initial guess for the fit is zero for each coefficients (of which
// there are "xDegree" + 1).
yPolyX[j] = new PolynomialFunction(xFitter.fit(new double[xDegree + 1]));
}
// For every knot (xval[i], yval[j]) of the grid, calculate corrected
// values fval_1
final double[][] fval_1 = new double[xLen][yLen];
for (int j = 0; j < yLen; j++) {
final PolynomialFunction f = yPolyX[j];
for (int i = 0; i < xLen; i++) {
fval_1[i][j] = f.value(xval[i]);
}
}
// For each line x[i] (0 <= i < xLen), construct a polynomial, with
// respect to variable y, fitting array fval_1[i][]
final PolynomialFunction[] xPolyY = new PolynomialFunction[xLen];
for (int i = 0; i < xLen; i++) {
yFitter.clearObservations();
for (int j = 0; j < yLen; j++) {
yFitter.addObservedPoint(1, yval[j], fval_1[i][j]);
}
// Initial guess for the fit is zero for each coefficients (of which
// there are "yDegree" + 1).
xPolyY[i] = new PolynomialFunction(yFitter.fit(new double[yDegree + 1]));
}
// For every knot (xval[i], yval[j]) of the grid, calculate corrected
// values fval_2
final double[][] fval_2 = new double[xLen][yLen];
for (int i = 0; i < xLen; i++) {
final PolynomialFunction f = xPolyY[i];
for (int j = 0; j < yLen; j++) {
fval_2[i][j] = f.value(yval[j]);
}
}
return super.interpolate(xval, yval, fval_2);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy