All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.MidpointFieldStepInterpolator Maven / Gradle / Ivy

There is a newer version: 4.15.102
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;

/**
 * This class implements a step interpolator for second order
 * Runge-Kutta integrator.
 *
 * 

This interpolator computes dense output inside the last * step computed. The interpolation equation is consistent with the * integration scheme : *

    *
  • Using reference point at step start:
    * y(tn + θ h) = y (tn) + θ h [(1 - θ) y'1 + θ y'2] *
  • *
  • Using reference point at step end:
    * y(tn + θ h) = y (tn + h) + (1-θ) h [θ y'1 - (1+θ) y'2] *
  • *
*

* * where θ belongs to [0 ; 1] and where y'1 and y'2 are the two * evaluations of the derivatives already computed during the * step.

* * @see MidpointFieldIntegrator * @param the type of the field elements * @since 3.6 */ class MidpointFieldStepInterpolator> extends RungeKuttaFieldStepInterpolator { /** Simple constructor. * @param field field to which the time and state vector elements belong * @param forward integration direction indicator * @param yDotK slopes at the intermediate points * @param globalPreviousState start of the global step * @param globalCurrentState end of the global step * @param softPreviousState start of the restricted step * @param softCurrentState end of the restricted step * @param mapper equations mapper for the all equations */ MidpointFieldStepInterpolator(final Field field, final boolean forward, final T[][] yDotK, final FieldODEStateAndDerivative globalPreviousState, final FieldODEStateAndDerivative globalCurrentState, final FieldODEStateAndDerivative softPreviousState, final FieldODEStateAndDerivative softCurrentState, final FieldEquationsMapper mapper) { super(field, forward, yDotK, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState, mapper); } /** {@inheritDoc} */ @Override protected MidpointFieldStepInterpolator create(final Field newField, final boolean newForward, final T[][] newYDotK, final FieldODEStateAndDerivative newGlobalPreviousState, final FieldODEStateAndDerivative newGlobalCurrentState, final FieldODEStateAndDerivative newSoftPreviousState, final FieldODEStateAndDerivative newSoftCurrentState, final FieldEquationsMapper newMapper) { return new MidpointFieldStepInterpolator(newField, newForward, newYDotK, newGlobalPreviousState, newGlobalCurrentState, newSoftPreviousState, newSoftCurrentState, newMapper); } /** {@inheritDoc} */ @SuppressWarnings("unchecked") @Override protected FieldODEStateAndDerivative computeInterpolatedStateAndDerivatives(final FieldEquationsMapper mapper, final T time, final T theta, final T thetaH, final T oneMinusThetaH) { final T coeffDot2 = theta.multiply(2); final T coeffDot1 = time.getField().getOne().subtract(coeffDot2); final T[] interpolatedState; final T[] interpolatedDerivatives; if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) { final T coeff1 = theta.multiply(oneMinusThetaH); final T coeff2 = theta.multiply(thetaH); interpolatedState = previousStateLinearCombination(coeff1, coeff2); interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2); } else { final T coeff1 = oneMinusThetaH.multiply(theta); final T coeff2 = oneMinusThetaH.multiply(theta.add(1)).negate(); interpolatedState = currentStateLinearCombination(coeff1, coeff2); interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2); } return new FieldODEStateAndDerivative(time, interpolatedState, interpolatedDerivatives); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy