org.apache.commons.rng.sampling.distribution.LargeMeanPoissonSampler Maven / Gradle / Ivy
Show all versions of driver-cql-shaded Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.InternalUtils.FactorialLog;
/**
* Sampler for the Poisson distribution.
*
*
* -
* For large means, we use the rejection algorithm described in
*
* Devroye, Luc. (1981).The Computer Generation of Poisson Random Variables
* Computing vol. 26 pp. 197-207.
*
*
*
*
* This sampler is suitable for {@code mean >= 40}.
*
* Sampling uses:
*
*
* - {@link UniformRandomProvider#nextLong()}
*
- {@link UniformRandomProvider#nextDouble()}
*
*
* @since 1.1
*/
public class LargeMeanPoissonSampler
implements DiscreteSampler {
/** Upper bound to avoid truncation. */
private static final double MAX_MEAN = 0.5 * Integer.MAX_VALUE;
/** Class to compute {@code log(n!)}. This has no cached values. */
private static final InternalUtils.FactorialLog NO_CACHE_FACTORIAL_LOG;
/** Used when there is no requirement for a small mean Poisson sampler. */
private static final DiscreteSampler NO_SMALL_MEAN_POISSON_SAMPLER = null;
static {
// Create without a cache.
NO_CACHE_FACTORIAL_LOG = FactorialLog.create();
}
/** Underlying source of randomness. */
private final UniformRandomProvider rng;
/** Exponential. */
private final ContinuousSampler exponential;
/** Gaussian. */
private final ContinuousSampler gaussian;
/** Local class to compute {@code log(n!)}. This may have cached values. */
private final InternalUtils.FactorialLog factorialLog;
// Working values
/** Algorithm constant: {@code Math.floor(mean)}. */
private final double lambda;
/** Algorithm constant: {@code Math.log(lambda)}. */
private final double logLambda;
/** Algorithm constant: {@code factorialLog((int) lambda)}. */
private final double logLambdaFactorial;
/** Algorithm constant: {@code Math.sqrt(lambda * Math.log(32 * lambda / Math.PI + 1))}. */
private final double delta;
/** Algorithm constant: {@code delta / 2}. */
private final double halfDelta;
/** Algorithm constant: {@code 2 * lambda + delta}. */
private final double twolpd;
/**
* Algorithm constant: {@code a1 / aSum} with
*
* - {@code a1 = Math.sqrt(Math.PI * twolpd) * Math.exp(c1)}
* - {@code aSum = a1 + a2 + 1}
*
*/
private final double p1;
/**
* Algorithm constant: {@code a2 / aSum} with
*
* - {@code a2 = (twolpd / delta) * Math.exp(-delta * (1 + delta) / twolpd)}
* - {@code aSum = a1 + a2 + 1}
*
*/
private final double p2;
/** Algorithm constant: {@code 1 / (8 * lambda)}. */
private final double c1;
/** The internal Poisson sampler for the lambda fraction. */
private final DiscreteSampler smallMeanPoissonSampler;
/**
* @param rng Generator of uniformly distributed random numbers.
* @param mean Mean.
* @throws IllegalArgumentException if {@code mean < 1} or
* {@code mean > 0.5 *} {@link Integer#MAX_VALUE}.
*/
public LargeMeanPoissonSampler(UniformRandomProvider rng,
double mean) {
if (mean < 1) {
throw new IllegalArgumentException("mean is not >= 1: " + mean);
}
// The algorithm is not valid if Math.floor(mean) is not an integer.
if (mean > MAX_MEAN) {
throw new IllegalArgumentException("mean " + mean + " > " + MAX_MEAN);
}
this.rng = rng;
gaussian = new ZigguratNormalizedGaussianSampler(rng);
exponential = new AhrensDieterExponentialSampler(rng, 1);
// Plain constructor uses the uncached function.
factorialLog = NO_CACHE_FACTORIAL_LOG;
// Cache values used in the algorithm
lambda = Math.floor(mean);
logLambda = Math.log(lambda);
logLambdaFactorial = factorialLog((int) lambda);
delta = Math.sqrt(lambda * Math.log(32 * lambda / Math.PI + 1));
halfDelta = delta / 2;
twolpd = 2 * lambda + delta;
c1 = 1 / (8 * lambda);
final double a1 = Math.sqrt(Math.PI * twolpd) * Math.exp(c1);
final double a2 = (twolpd / delta) * Math.exp(-delta * (1 + delta) / twolpd);
final double aSum = a1 + a2 + 1;
p1 = a1 / aSum;
p2 = a2 / aSum;
// The algorithm requires a Poisson sample from the remaining lambda fraction.
final double lambdaFractional = mean - lambda;
smallMeanPoissonSampler = (lambdaFractional < Double.MIN_VALUE) ?
NO_SMALL_MEAN_POISSON_SAMPLER : // Not used.
new SmallMeanPoissonSampler(rng, lambdaFractional);
}
/**
* Instantiates a sampler using a precomputed state.
*
* @param rng Generator of uniformly distributed random numbers.
* @param state The state for {@code lambda = (int)Math.floor(mean)}.
* @param lambdaFractional The lambda fractional value
* ({@code mean - (int)Math.floor(mean))}.
* @throws IllegalArgumentException
* if {@code lambdaFractional < 0 || lambdaFractional >= 1}.
*/
LargeMeanPoissonSampler(UniformRandomProvider rng,
LargeMeanPoissonSamplerState state,
double lambdaFractional) {
if (lambdaFractional < 0 || lambdaFractional >= 1) {
throw new IllegalArgumentException(
"lambdaFractional must be in the range 0 (inclusive) to 1 (exclusive): " + lambdaFractional);
}
this.rng = rng;
gaussian = new ZigguratNormalizedGaussianSampler(rng);
exponential = new AhrensDieterExponentialSampler(rng, 1);
// Plain constructor uses the uncached function.
factorialLog = NO_CACHE_FACTORIAL_LOG;
// Use the state to initialise the algorithm
lambda = state.getLambdaRaw();
logLambda = state.getLogLambda();
logLambdaFactorial = state.getLogLambdaFactorial();
delta = state.getDelta();
halfDelta = state.getHalfDelta();
twolpd = state.getTwolpd();
p1 = state.getP1();
p2 = state.getP2();
c1 = state.getC1();
// The algorithm requires a Poisson sample from the remaining lambda fraction.
smallMeanPoissonSampler = (lambdaFractional < Double.MIN_VALUE) ?
NO_SMALL_MEAN_POISSON_SAMPLER : // Not used.
new SmallMeanPoissonSampler(rng, lambdaFractional);
}
/** {@inheritDoc} */
@Override
public int sample() {
final int y2 = (smallMeanPoissonSampler == null) ?
0 : // No lambda fraction
smallMeanPoissonSampler.sample();
double x;
double y;
double v;
int a;
double t;
double qr;
double qa;
while (true) {
final double u = rng.nextDouble();
if (u <= p1) {
final double n = gaussian.sample();
x = n * Math.sqrt(lambda + halfDelta) - 0.5d;
if (x > delta || x < -lambda) {
continue;
}
y = x < 0 ? Math.floor(x) : Math.ceil(x);
final double e = exponential.sample();
v = -e - 0.5 * n * n + c1;
} else {
if (u > p1 + p2) {
y = lambda;
break;
}
x = delta + (twolpd / delta) * exponential.sample();
y = Math.ceil(x);
v = -exponential.sample() - delta * (x + 1) / twolpd;
}
a = x < 0 ? 1 : 0;
t = y * (y + 1) / (2 * lambda);
if (v < -t && a == 0) {
y = lambda + y;
break;
}
qr = t * ((2 * y + 1) / (6 * lambda) - 1);
qa = qr - (t * t) / (3 * (lambda + a * (y + 1)));
if (v < qa) {
y = lambda + y;
break;
}
if (v > qr) {
continue;
}
if (v < y * logLambda - factorialLog((int) (y + lambda)) + logLambdaFactorial) {
y = lambda + y;
break;
}
}
return (int) Math.min(y2 + (long) y, Integer.MAX_VALUE);
}
/**
* Compute the natural logarithm of the factorial of {@code n}.
*
* @param n Argument.
* @return {@code log(n!)}
* @throws IllegalArgumentException if {@code n < 0}.
*/
private double factorialLog(int n) {
return factorialLog.value(n);
}
/** {@inheritDoc} */
@Override
public String toString() {
return "Large Mean Poisson deviate [" + rng.toString() + "]";
}
/**
* Gets the initialisation state of the sampler.
*
* The state is computed using an integer {@code lambda} value of
* {@code lambda = (int)Math.floor(mean)}.
*
*
The state will be suitable for reconstructing a new sampler with a mean
* in the range {@code lambda <= mean < lambda+1} using
* {@link #LargeMeanPoissonSampler(UniformRandomProvider, LargeMeanPoissonSamplerState, double)}.
*
* @return the state
*/
LargeMeanPoissonSamplerState getState() {
return new LargeMeanPoissonSamplerState(lambda, logLambda, logLambdaFactorial,
delta, halfDelta, twolpd, p1, p2, c1);
}
/**
* Encapsulate the state of the sampler. The state is valid for construction of
* a sampler in the range {@code lambda <= mean < lambda+1}.
*
*
This class is immutable.
*
* @see #getLambda()
*/
static final class LargeMeanPoissonSamplerState {
/** Algorithm constant {@code lambda}. */
private final double lambda;
/** Algorithm constant {@code logLambda}. */
private final double logLambda;
/** Algorithm constant {@code logLambdaFactorial}. */
private final double logLambdaFactorial;
/** Algorithm constant {@code delta}. */
private final double delta;
/** Algorithm constant {@code halfDelta}. */
private final double halfDelta;
/** Algorithm constant {@code twolpd}. */
private final double twolpd;
/** Algorithm constant {@code p1}. */
private final double p1;
/** Algorithm constant {@code p2}. */
private final double p2;
/** Algorithm constant {@code c1}. */
private final double c1;
/**
* Creates the state.
*
*
The state is valid for construction of a sampler in the range
* {@code lambda <= mean < lambda+1} where {@code lambda} is an integer.
*
* @param lambda the lambda
* @param logLambda the log lambda
* @param logLambdaFactorial the log lambda factorial
* @param delta the delta
* @param halfDelta the half delta
* @param twolpd the two lambda plus delta
* @param p1 the p1 constant
* @param p2 the p2 constant
* @param c1 the c1 constant
*/
private LargeMeanPoissonSamplerState(double lambda, double logLambda,
double logLambdaFactorial, double delta, double halfDelta, double twolpd,
double p1, double p2, double c1) {
this.lambda = lambda;
this.logLambda = logLambda;
this.logLambdaFactorial = logLambdaFactorial;
this.delta = delta;
this.halfDelta = halfDelta;
this.twolpd = twolpd;
this.p1 = p1;
this.p2 = p2;
this.c1 = c1;
}
/**
* Get the lambda value for the state.
*
*
Equal to {@code floor(mean)} for a Poisson sampler.
* @return the lambda value
*/
int getLambda() {
return (int) getLambdaRaw();
}
/**
* @return algorithm constant {@code lambda}
*/
double getLambdaRaw() {
return lambda;
}
/**
* @return algorithm constant {@code logLambda}
*/
double getLogLambda() {
return logLambda;
}
/**
* @return algorithm constant {@code logLambdaFactorial}
*/
double getLogLambdaFactorial() {
return logLambdaFactorial;
}
/**
* @return algorithm constant {@code delta}
*/
double getDelta() {
return delta;
}
/**
* @return algorithm constant {@code halfDelta}
*/
double getHalfDelta() {
return halfDelta;
}
/**
* @return algorithm constant {@code twolpd}
*/
double getTwolpd() {
return twolpd;
}
/**
* @return algorithm constant {@code p1}
*/
double getP1() {
return p1;
}
/**
* @return algorithm constant {@code p2}
*/
double getP2() {
return p2;
}
/**
* @return algorithm constant {@code c1}
*/
double getC1() {
return c1;
}
}
}