All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.eclipse.jetty.io.ssl.SslConnection Maven / Gradle / Ivy

There is a newer version: 4.15.102
Show newest version
//
// ========================================================================
// Copyright (c) 1995-2021 Mort Bay Consulting Pty Ltd and others.
//
// This program and the accompanying materials are made available under the
// terms of the Eclipse Public License v. 2.0 which is available at
// https://www.eclipse.org/legal/epl-2.0, or the Apache License, Version 2.0
// which is available at https://www.apache.org/licenses/LICENSE-2.0.
//
// SPDX-License-Identifier: EPL-2.0 OR Apache-2.0
// ========================================================================
//

package org.eclipse.jetty.io.ssl;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Executor;
import java.util.concurrent.atomic.AtomicReference;
import java.util.function.ToIntFunction;
import javax.net.ssl.SSLEngine;
import javax.net.ssl.SSLEngineResult;
import javax.net.ssl.SSLEngineResult.HandshakeStatus;
import javax.net.ssl.SSLEngineResult.Status;
import javax.net.ssl.SSLException;
import javax.net.ssl.SSLHandshakeException;
import javax.net.ssl.SSLSession;

import org.eclipse.jetty.io.AbstractConnection;
import org.eclipse.jetty.io.AbstractEndPoint;
import org.eclipse.jetty.io.ByteBufferPool;
import org.eclipse.jetty.io.Connection;
import org.eclipse.jetty.io.EndPoint;
import org.eclipse.jetty.io.WriteFlusher;
import org.eclipse.jetty.util.BufferUtil;
import org.eclipse.jetty.util.Callback;
import org.eclipse.jetty.util.StringUtil;
import org.eclipse.jetty.util.thread.AutoLock;
import org.eclipse.jetty.util.thread.Invocable;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * A Connection that acts as an interceptor between an EndPoint providing SSL encrypted data
 * and another consumer of an EndPoint (typically an {@link Connection} like HttpConnection) that
 * wants unencrypted data.
 * 

* The connector uses an {@link EndPoint} (typically SocketChannelEndPoint) as * it's source/sink of encrypted data. It then provides an endpoint via {@link #getDecryptedEndPoint()} to * expose a source/sink of unencrypted data to another connection (eg HttpConnection). *

* The design of this class is based on a clear separation between the passive methods, which do not block nor schedule any * asynchronous callbacks, and active methods that do schedule asynchronous callbacks. *

* The passive methods are {@link DecryptedEndPoint#fill(ByteBuffer)} and {@link DecryptedEndPoint#flush(ByteBuffer...)}. They make best * effort attempts to progress the connection using only calls to the encrypted {@link EndPoint#fill(ByteBuffer)} and {@link EndPoint#flush(ByteBuffer...)} * methods. They will never block nor schedule any readInterest or write callbacks. If a fill/flush cannot progress either because * of network congestion or waiting for an SSL handshake message, then the fill/flush will simply return with zero bytes filled/flushed. * Specifically, if a flush cannot proceed because it needs to receive a handshake message, then the flush will attempt to fill bytes from the * encrypted endpoint, but if insufficient bytes are read it will NOT call {@link EndPoint#fillInterested(Callback)}. *

* It is only the active methods : {@link DecryptedEndPoint#fillInterested(Callback)} and * {@link DecryptedEndPoint#write(Callback, ByteBuffer...)} that may schedule callbacks by calling the encrypted * {@link EndPoint#fillInterested(Callback)} and {@link EndPoint#write(Callback, ByteBuffer...)} * methods. For normal data handling, the decrypted fillInterest method will result in an encrypted fillInterest and a decrypted * write will result in an encrypted write. However, due to SSL handshaking requirements, it is also possible for a decrypted fill * to call the encrypted write and for the decrypted flush to call the encrypted fillInterested methods. *

* MOST IMPORTANTLY, the encrypted callbacks from the active methods (#onFillable() and WriteFlusher#completeWrite()) do no filling or flushing * themselves. Instead they simple make the callbacks to the decrypted callbacks, so that the passive encrypted fill/flush will * be called again and make another best effort attempt to progress the connection. */ public class SslConnection extends AbstractConnection implements Connection.UpgradeTo { private static final Logger LOG = LoggerFactory.getLogger(SslConnection.class); private static final String TLS_1_3 = "TLSv1.3"; private enum HandshakeState { INITIAL, HANDSHAKE, SUCCEEDED, FAILED } private enum FillState { IDLE, // Not Filling any data INTERESTED, // We have a pending read interest WAIT_FOR_FLUSH // Waiting for a flush to happen } private enum FlushState { IDLE, // Not flushing any data WRITING, // We have a pending write of encrypted data WAIT_FOR_FILL // Waiting for a fill to happen } private final AutoLock _lock = new AutoLock(); private final List handshakeListeners = new ArrayList<>(); private final ByteBufferPool _bufferPool; private final SSLEngine _sslEngine; private final DecryptedEndPoint _decryptedEndPoint; private ByteBuffer _decryptedInput; private ByteBuffer _encryptedInput; private ByteBuffer _encryptedOutput; private final boolean _encryptedDirectBuffers; private final boolean _decryptedDirectBuffers; private boolean _renegotiationAllowed; private int _renegotiationLimit = -1; private boolean _closedOutbound; private boolean _requireCloseMessage; private FlushState _flushState = FlushState.IDLE; private FillState _fillState = FillState.IDLE; private AtomicReference _handshake = new AtomicReference<>(HandshakeState.INITIAL); private boolean _underflown; private abstract class RunnableTask implements Runnable, Invocable { private final String _operation; protected RunnableTask(String op) { _operation = op; } @Override public String toString() { return String.format("SSL:%s:%s:%s", SslConnection.this, _operation, getInvocationType()); } } private final Runnable _runFillable = new RunnableTask("runFillable") { @Override public void run() { _decryptedEndPoint.getFillInterest().fillable(); } @Override public InvocationType getInvocationType() { return _decryptedEndPoint.getFillInterest().getCallbackInvocationType(); } }; private final Callback _sslReadCallback = new Callback() { @Override public void succeeded() { onFillable(); } @Override public void failed(final Throwable x) { onFillInterestedFailed(x); } @Override public InvocationType getInvocationType() { return getDecryptedEndPoint().getFillInterest().getCallbackInvocationType(); } @Override public String toString() { return String.format("SSLC.NBReadCB@%x{%s}", SslConnection.this.hashCode(), SslConnection.this); } }; public SslConnection(ByteBufferPool byteBufferPool, Executor executor, EndPoint endPoint, SSLEngine sslEngine) { this(byteBufferPool, executor, endPoint, sslEngine, false, false); } public SslConnection(ByteBufferPool byteBufferPool, Executor executor, EndPoint endPoint, SSLEngine sslEngine, boolean useDirectBuffersForEncryption, boolean useDirectBuffersForDecryption) { // This connection does not execute calls to onFillable(), so they will be called by the selector thread. // onFillable() does not block and will only wakeup another thread to do the actual reading and handling. super(endPoint, executor); this._bufferPool = byteBufferPool; this._sslEngine = sslEngine; this._decryptedEndPoint = newDecryptedEndPoint(); this._encryptedDirectBuffers = useDirectBuffersForEncryption; this._decryptedDirectBuffers = useDirectBuffersForDecryption; } public void addHandshakeListener(SslHandshakeListener listener) { handshakeListeners.add(listener); } public boolean removeHandshakeListener(SslHandshakeListener listener) { return handshakeListeners.remove(listener); } protected DecryptedEndPoint newDecryptedEndPoint() { return new DecryptedEndPoint(); } public SSLEngine getSSLEngine() { return _sslEngine; } public DecryptedEndPoint getDecryptedEndPoint() { return _decryptedEndPoint; } public boolean isRenegotiationAllowed() { return _renegotiationAllowed; } public void setRenegotiationAllowed(boolean renegotiationAllowed) { _renegotiationAllowed = renegotiationAllowed; } /** * @return The number of renegotiations allowed for this connection. When the limit * is 0 renegotiation will be denied. If the limit is less than 0 then no limit is applied. */ public int getRenegotiationLimit() { return _renegotiationLimit; } /** * @param renegotiationLimit The number of renegotiations allowed for this connection. * When the limit is 0 renegotiation will be denied. If the limit is less than 0 then no limit is applied. * Default -1. */ public void setRenegotiationLimit(int renegotiationLimit) { _renegotiationLimit = renegotiationLimit; } /** * @return whether peers must send the TLS {@code close_notify} message */ public boolean isRequireCloseMessage() { return _requireCloseMessage; } /** *

Sets whether it is required that a peer send the TLS {@code close_notify} message * to indicate the will to close the connection, otherwise it may be interpreted as a * truncation attack.

*

This option is only useful on clients, since typically servers cannot accept * connection-delimited content that may be truncated.

* * @param requireCloseMessage whether peers must send the TLS {@code close_notify} message */ public void setRequireCloseMessage(boolean requireCloseMessage) { _requireCloseMessage = requireCloseMessage; } private boolean isHandshakeInitial() { return _handshake.get() == HandshakeState.INITIAL; } private boolean isHandshakeSucceeded() { return _handshake.get() == HandshakeState.SUCCEEDED; } private boolean isHandshakeComplete() { HandshakeState state = _handshake.get(); return state == HandshakeState.SUCCEEDED || state == HandshakeState.FAILED; } private int getApplicationBufferSize() { return getBufferSize(SSLSession::getApplicationBufferSize); } private int getPacketBufferSize() { return getBufferSize(SSLSession::getPacketBufferSize); } private int getBufferSize(ToIntFunction bufferSizeFn) { SSLSession hsSession = _sslEngine.getHandshakeSession(); SSLSession session = _sslEngine.getSession(); int size = bufferSizeFn.applyAsInt(session); if (hsSession == null || hsSession == session) return size; int hsSize = bufferSizeFn.applyAsInt(hsSession); return Math.max(hsSize, size); } private void acquireEncryptedInput() { if (_encryptedInput == null) _encryptedInput = _bufferPool.acquire(getPacketBufferSize(), _encryptedDirectBuffers); } private void acquireEncryptedOutput() { if (_encryptedOutput == null) _encryptedOutput = _bufferPool.acquire(getPacketBufferSize(), _encryptedDirectBuffers); } @Override public void onUpgradeTo(ByteBuffer buffer) { acquireEncryptedInput(); BufferUtil.append(_encryptedInput, buffer); } @Override public void onOpen() { super.onOpen(); getDecryptedEndPoint().getConnection().onOpen(); } @Override public void onClose(Throwable cause) { _decryptedEndPoint.getConnection().onClose(cause); super.onClose(cause); } @Override public void close() { getDecryptedEndPoint().getConnection().close(); } @Override public boolean onIdleExpired() { return getDecryptedEndPoint().getConnection().onIdleExpired(); } @Override public void onFillable() { // onFillable means that there are encrypted bytes ready to be filled. // however we do not fill them here on this callback, but instead wakeup // the decrypted readInterest and/or writeFlusher so that they will attempt // to do the fill and/or flush again and these calls will do the actually // filling. if (LOG.isDebugEnabled()) LOG.debug(">c.onFillable {}", SslConnection.this); // We have received a close handshake, close the end point to send FIN. if (_decryptedEndPoint.isInputShutdown()) _decryptedEndPoint.close(); _decryptedEndPoint.onFillable(); if (LOG.isDebugEnabled()) LOG.debug("%s=>%s", getClass().getSimpleName(), hashCode(), _sslEngine.getHandshakeStatus(), ei, eo, di, _fillState, _flushState, _decryptedEndPoint.toEndPointString(), connection instanceof AbstractConnection ? ((AbstractConnection)connection).toConnectionString() : connection); } private void releaseEncryptedInputBuffer() { if (_encryptedInput != null && !_encryptedInput.hasRemaining()) { _bufferPool.release(_encryptedInput); _encryptedInput = null; } } protected void releaseDecryptedInputBuffer() { if (_decryptedInput != null && !_decryptedInput.hasRemaining()) { _bufferPool.release(_decryptedInput); _decryptedInput = null; } } private void releaseEncryptedOutputBuffer() { if (!_lock.isHeldByCurrentThread()) throw new IllegalStateException(); if (_encryptedOutput != null && !_encryptedOutput.hasRemaining()) { _bufferPool.release(_encryptedOutput); _encryptedOutput = null; } } protected int networkFill(ByteBuffer input) throws IOException { return getEndPoint().fill(input); } protected boolean networkFlush(ByteBuffer output) throws IOException { return getEndPoint().flush(output); } public class DecryptedEndPoint extends AbstractEndPoint implements EndPoint.Wrapper { private final Callback _incompleteWriteCallback = new IncompleteWriteCallback(); private Throwable _failure; public DecryptedEndPoint() { // Disable idle timeout checking: no scheduler and -1 timeout for this instance. super(null); super.setIdleTimeout(-1); } @Override public EndPoint unwrap() { return getEndPoint(); } @Override public long getIdleTimeout() { return getEndPoint().getIdleTimeout(); } @Override public void setIdleTimeout(long idleTimeout) { getEndPoint().setIdleTimeout(idleTimeout); } @Override public boolean isOpen() { return getEndPoint().isOpen(); } @Override public InetSocketAddress getLocalAddress() { return getEndPoint().getLocalAddress(); } @Override public InetSocketAddress getRemoteAddress() { return getEndPoint().getRemoteAddress(); } @Override public WriteFlusher getWriteFlusher() { return super.getWriteFlusher(); } protected void onFillable() { try { // If we are handshaking, then wake up any waiting write as well as it may have been blocked on the read boolean waitingForFill; try (AutoLock l = _lock.lock()) { if (LOG.isDebugEnabled()) LOG.debug("onFillable {}", SslConnection.this); _fillState = FillState.IDLE; waitingForFill = _flushState == FlushState.WAIT_FOR_FILL; } getFillInterest().fillable(); if (waitingForFill) { try (AutoLock l = _lock.lock()) { waitingForFill = _flushState == FlushState.WAIT_FOR_FILL; } if (waitingForFill) fill(BufferUtil.EMPTY_BUFFER); } } catch (Throwable e) { close(e); } } protected void onFillableFail(Throwable failure) { // If we are handshaking, then wake up any waiting write as well as it may have been blocked on the read boolean fail = false; try (AutoLock l = _lock.lock()) { if (LOG.isDebugEnabled()) LOG.debug("onFillableFail {}", SslConnection.this, failure); _fillState = FillState.IDLE; if (_flushState == FlushState.WAIT_FOR_FILL) { _flushState = FlushState.IDLE; fail = true; } } // wake up whoever is doing the fill getFillInterest().onFail(failure); // Try to complete the write if (fail) { if (!getWriteFlusher().onFail(failure)) close(failure); } } @Override public void setConnection(Connection connection) { if (connection instanceof AbstractConnection) { // This is an optimization to avoid that upper layer connections use small // buffers and we need to copy decrypted data rather than decrypting in place. AbstractConnection c = (AbstractConnection)connection; int appBufferSize = getApplicationBufferSize(); if (c.getInputBufferSize() < appBufferSize) c.setInputBufferSize(appBufferSize); } super.setConnection(connection); } public SslConnection getSslConnection() { return SslConnection.this; } @Override public int fill(ByteBuffer buffer) throws IOException { try { try (AutoLock l = _lock.lock()) { if (LOG.isDebugEnabled()) LOG.debug(">fill {}", SslConnection.this); int filled = -2; try { if (_fillState != FillState.IDLE) return filled = 0; // Do we already have some decrypted data? if (BufferUtil.hasContent(_decryptedInput)) return filled = BufferUtil.append(buffer, _decryptedInput); // loop filling and unwrapping until we have something while (true) { HandshakeStatus status = _sslEngine.getHandshakeStatus(); if (LOG.isDebugEnabled()) LOG.debug("fill {}", status); switch (status) { case NEED_UNWRAP: case NOT_HANDSHAKING: break; case NEED_TASK: _sslEngine.getDelegatedTask().run(); continue; case NEED_WRAP: if (_flushState == FlushState.IDLE && flush(BufferUtil.EMPTY_BUFFER)) { Throwable failure = _failure; if (failure != null) rethrow(failure); if (_sslEngine.isInboundDone()) return filled = -1; continue; } // Handle in needsFillInterest(). return filled = 0; default: throw new IllegalStateException("Unexpected HandshakeStatus " + status); } acquireEncryptedInput(); // can we use the passed buffer if it is big enough ByteBuffer appIn; int appBufferSize = getApplicationBufferSize(); if (_decryptedInput == null) { if (BufferUtil.space(buffer) > appBufferSize) appIn = buffer; else appIn = _decryptedInput = _bufferPool.acquire(appBufferSize, _decryptedDirectBuffers); } else { appIn = _decryptedInput; BufferUtil.compact(_encryptedInput); } // Let's try reading some encrypted data... even if we have some already. int netFilled = networkFill(_encryptedInput); if (LOG.isDebugEnabled()) LOG.debug("net filled={}", netFilled); // Workaround for Java 11 behavior. if (netFilled < 0 && isHandshakeInitial() && BufferUtil.isEmpty(_encryptedInput)) closeInbound(); if (netFilled > 0 && !isHandshakeComplete() && isOutboundDone()) throw new SSLHandshakeException("Closed during handshake"); if (_handshake.compareAndSet(HandshakeState.INITIAL, HandshakeState.HANDSHAKE)) { if (LOG.isDebugEnabled()) LOG.debug("fill starting handshake {}", SslConnection.this); } // Let's unwrap even if we have no net data because in that // case we want to fall through to the handshake handling int pos = BufferUtil.flipToFill(appIn); SSLEngineResult unwrapResult; try { _underflown = false; unwrapResult = SslConnection.this.unwrap(_sslEngine, _encryptedInput, appIn); } finally { BufferUtil.flipToFlush(appIn, pos); } if (LOG.isDebugEnabled()) LOG.debug("unwrap net_filled={} {} encryptedBuffer={} unwrapBuffer={} appBuffer={}", netFilled, StringUtil.replace(unwrapResult.toString(), '\n', ' '), BufferUtil.toSummaryString(_encryptedInput), BufferUtil.toDetailString(appIn), BufferUtil.toDetailString(buffer)); SSLEngineResult.Status unwrap = unwrapResult.getStatus(); // Extra check on unwrapResultStatus == OK with zero bytes consumed // or produced is due to an SSL client on Android (see bug #454773). if (unwrap == Status.OK && unwrapResult.bytesConsumed() == 0 && unwrapResult.bytesProduced() == 0) unwrap = Status.BUFFER_UNDERFLOW; switch (unwrap) { case CLOSED: Throwable failure = _failure; if (failure != null) rethrow(failure); return filled = -1; case BUFFER_UNDERFLOW: if (netFilled > 0) continue; // try filling some more _underflown = true; if (netFilled < 0 && _sslEngine.getUseClientMode()) { Throwable closeFailure = closeInbound(); if (_flushState == FlushState.WAIT_FOR_FILL) { Throwable handshakeFailure = new SSLHandshakeException("Abruptly closed by peer"); if (closeFailure != null) handshakeFailure.initCause(closeFailure); throw handshakeFailure; } return filled = -1; } return filled = netFilled; case BUFFER_OVERFLOW: // It's possible that SSLSession.applicationBufferSize has been expanded // by the SSLEngine implementation. Unwrapping a large encrypted buffer // causes BUFFER_OVERFLOW because the (old) applicationBufferSize is // too small. Release the decrypted input buffer so it will be re-acquired // with the larger capacity. // See also system property "jsse.SSLEngine.acceptLargeFragments". if (BufferUtil.isEmpty(_decryptedInput) && appBufferSize < getApplicationBufferSize()) { releaseDecryptedInputBuffer(); continue; } throw new IllegalStateException("Unexpected unwrap result " + unwrap); case OK: if (unwrapResult.getHandshakeStatus() == HandshakeStatus.FINISHED) handshakeSucceeded(); if (isRenegotiating() && !allowRenegotiate()) return filled = -1; // If bytes were produced, don't bother with the handshake status; // pass the decrypted data to the application, which will perform // another call to fill() or flush(). if (unwrapResult.bytesProduced() > 0) { if (appIn == buffer) return filled = unwrapResult.bytesProduced(); return filled = BufferUtil.append(buffer, _decryptedInput); } break; default: throw new IllegalStateException("Unexpected unwrap result " + unwrap); } } } catch (Throwable x) { Throwable f = handleException(x, "fill"); Throwable failure = handshakeFailed(f); if (_flushState == FlushState.WAIT_FOR_FILL) { _flushState = FlushState.IDLE; getExecutor().execute(() -> _decryptedEndPoint.getWriteFlusher().onFail(failure)); } throw failure; } finally { releaseEncryptedInputBuffer(); releaseDecryptedInputBuffer(); if (_flushState == FlushState.WAIT_FOR_FILL) { _flushState = FlushState.IDLE; getExecutor().execute(() -> _decryptedEndPoint.getWriteFlusher().completeWrite()); } if (LOG.isDebugEnabled()) LOG.debug("needFillInterest s={}/{} uf={} ei={} di={} {}", _flushState, _fillState, _underflown, BufferUtil.toDetailString(_encryptedInput), BufferUtil.toDetailString(_decryptedInput), SslConnection.this); if (_fillState != FillState.IDLE) return; // Fillable if we have decrypted input OR enough encrypted input. fillable = BufferUtil.hasContent(_decryptedInput) || (BufferUtil.hasContent(_encryptedInput) && !_underflown); HandshakeStatus status = _sslEngine.getHandshakeStatus(); switch (status) { case NEED_TASK: // Pretend we are fillable fillable = true; break; case NEED_UNWRAP: case NOT_HANDSHAKING: if (!fillable) { interest = true; _fillState = FillState.INTERESTED; if (_flushState == FlushState.IDLE && BufferUtil.hasContent(_encryptedOutput)) { _flushState = FlushState.WRITING; write = _encryptedOutput; } } break; case NEED_WRAP: if (!fillable) { _fillState = FillState.WAIT_FOR_FLUSH; if (_flushState == FlushState.IDLE) { _flushState = FlushState.WRITING; write = BufferUtil.hasContent(_encryptedOutput) ? _encryptedOutput : BufferUtil.EMPTY_BUFFER; } } break; default: throw new IllegalStateException("Unexpected HandshakeStatus " + status); } if (LOG.isDebugEnabled()) LOG.debug(" 0) _renegotiationLimit--; } } private Throwable handshakeFailed(Throwable failure) { if (_handshake.compareAndSet(HandshakeState.HANDSHAKE, HandshakeState.FAILED)) { if (LOG.isDebugEnabled()) LOG.debug("handshake failed {} {}", SslConnection.this, failure); if (!(failure instanceof SSLHandshakeException)) failure = new SSLHandshakeException(failure.getMessage()).initCause(failure); notifyHandshakeFailed(_sslEngine, failure); } return failure; } private void terminateInput() { try { _sslEngine.closeInbound(); } catch (Throwable x) { LOG.trace("IGNORED", x); } } private Throwable closeInbound() throws SSLException { HandshakeStatus handshakeStatus = _sslEngine.getHandshakeStatus(); try { _sslEngine.closeInbound(); return null; } catch (SSLException x) { if (handshakeStatus == HandshakeStatus.NOT_HANDSHAKING && isRequireCloseMessage()) throw x; LOG.trace("IGNORED", x); return x; } catch (Throwable x) { LOG.trace("IGNORED", x); return x; } } @Override public boolean flush(ByteBuffer... appOuts) throws IOException { try { try (AutoLock l = _lock.lock()) { if (LOG.isDebugEnabled()) { LOG.debug(">flush {}", SslConnection.this); int i = 0; for (ByteBuffer b : appOuts) { LOG.debug("flush b[{}]={}", i++, BufferUtil.toDetailString(b)); } } // finish of any previous flushes if (BufferUtil.hasContent(_encryptedOutput) && !networkFlush(_encryptedOutput)) return false; boolean isEmpty = BufferUtil.isEmpty(appOuts); Boolean result = null; try { if (_flushState != FlushState.IDLE) return result = false; // Keep going while we can make progress or until we are done while (true) { HandshakeStatus status = _sslEngine.getHandshakeStatus(); if (LOG.isDebugEnabled()) LOG.debug("flush {}", status); switch (status) { case NEED_WRAP: case NOT_HANDSHAKING: break; case NEED_TASK: _sslEngine.getDelegatedTask().run(); continue; case NEED_UNWRAP: // Workaround for Java 11 behavior. if (isHandshakeInitial() && isOutboundDone()) break; if (_fillState == FillState.IDLE) { int filled = fill(BufferUtil.EMPTY_BUFFER); if (_sslEngine.getHandshakeStatus() != status) continue; if (filled < 0) throw new IOException("Broken pipe"); } return result = isEmpty; default: throw new IllegalStateException("Unexpected HandshakeStatus " + status); } int packetBufferSize = getPacketBufferSize(); acquireEncryptedOutput(); if (_handshake.compareAndSet(HandshakeState.INITIAL, HandshakeState.HANDSHAKE)) { if (LOG.isDebugEnabled()) LOG.debug("flush starting handshake {}", SslConnection.this); } // We call sslEngine.wrap to try to take bytes from appOuts // buffers and encrypt them into the _encryptedOutput buffer. BufferUtil.compact(_encryptedOutput); int pos = BufferUtil.flipToFill(_encryptedOutput); SSLEngineResult wrapResult; try { wrapResult = wrap(_sslEngine, appOuts, _encryptedOutput); } finally { BufferUtil.flipToFlush(_encryptedOutput, pos); } if (LOG.isDebugEnabled()) LOG.debug("wrap {} {} ioDone={}/{}", StringUtil.replace(wrapResult.toString(), '\n', ' '), BufferUtil.toSummaryString(_encryptedOutput), _sslEngine.isInboundDone(), _sslEngine.isOutboundDone()); // Was all the data consumed? isEmpty = BufferUtil.isEmpty(appOuts); // if we have net bytes, let's try to flush them boolean flushed = true; if (BufferUtil.hasContent(_encryptedOutput)) flushed = networkFlush(_encryptedOutput); if (LOG.isDebugEnabled()) LOG.debug("net flushed={}, ac={}", flushed, isEmpty); // Now deal with the results returned from the wrap Status wrap = wrapResult.getStatus(); switch (wrap) { case CLOSED: { // TODO: do we need to remember the CLOSED state or SSLEngine // TODO: will produce CLOSED again if wrap() is called again? if (!flushed) return result = false; getEndPoint().shutdownOutput(); if (isEmpty) return result = true; throw new IOException("Broken pipe"); } case BUFFER_OVERFLOW: if (!flushed) return result = false; // It's possible that SSLSession.packetBufferSize has been expanded // by the SSLEngine implementation. Wrapping a large application buffer // causes BUFFER_OVERFLOW because the (old) packetBufferSize is // too small. Release the encrypted output buffer so that it will // be re-acquired with the larger capacity. // See also system property "jsse.SSLEngine.acceptLargeFragments". if (packetBufferSize < getPacketBufferSize()) { releaseEncryptedOutputBuffer(); continue; } throw new IllegalStateException("Unexpected wrap result " + wrap); case OK: if (wrapResult.getHandshakeStatus() == HandshakeStatus.FINISHED) handshakeSucceeded(); if (isRenegotiating() && !allowRenegotiate()) { getEndPoint().shutdownOutput(); if (isEmpty && BufferUtil.isEmpty(_encryptedOutput)) return result = true; throw new IOException("Broken pipe"); } if (!flushed) return result = false; if (isEmpty) { if (wrapResult.getHandshakeStatus() != HandshakeStatus.NEED_WRAP || wrapResult.bytesProduced() == 0) return result = true; } break; default: throw new IllegalStateException("Unexpected wrap result " + wrap); } if (getEndPoint().isOutputShutdown()) return false; } } catch (Throwable x) { Throwable failure = handleException(x, "flush"); throw handshakeFailed(failure); } finally { releaseEncryptedOutputBuffer(); if (LOG.isDebugEnabled()) LOG.debug("onIncompleteFlush {} {}", SslConnection.this, BufferUtil.toDetailString(_encryptedOutput)); if (_flushState != FlushState.IDLE) return; while (true) { HandshakeStatus status = _sslEngine.getHandshakeStatus(); switch (status) { case NEED_TASK: case NEED_WRAP: case NOT_HANDSHAKING: // write what we have or an empty buffer to reschedule a call to flush write = BufferUtil.hasContent(_encryptedOutput) ? _encryptedOutput : BufferUtil.EMPTY_BUFFER; _flushState = FlushState.WRITING; break; case NEED_UNWRAP: // If we have something to write, then write it and ignore the needed unwrap for now. if (BufferUtil.hasContent(_encryptedOutput)) { write = _encryptedOutput; _flushState = FlushState.WRITING; break; } if (_fillState != FillState.IDLE) { // Wait for a fill that is happening anyway _flushState = FlushState.WAIT_FOR_FILL; break; } // Try filling ourselves try { int filled = fill(BufferUtil.EMPTY_BUFFER); // If this changed the status, let's try again if (_sslEngine.getHandshakeStatus() != status) continue; if (filled < 0) throw new IOException("Broken pipe"); } catch (IOException e) { LOG.debug("Incomplete flush?", e); close(e); write = BufferUtil.EMPTY_BUFFER; _flushState = FlushState.WRITING; break; } // Make sure we are fill interested. fillInterest = true; _fillState = FillState.INTERESTED; _flushState = FlushState.WAIT_FOR_FILL; break; default: throw new IllegalStateException("Unexpected HandshakeStatus " + status); } break; } if (LOG.isDebugEnabled()) LOG.debug(" { try (AutoLock l = _lock.lock()) { _flushState = FlushState.IDLE; releaseEncryptedOutputBuffer(); } }, t -> endPoint.close()), write); } } } if (close) endPoint.close(); else ensureFillInterested(); } catch (Throwable x) { LOG.trace("IGNORED", x); endPoint.close(); } } private void closeOutbound() { try { _sslEngine.closeOutbound(); } catch (Throwable x) { if (LOG.isDebugEnabled()) LOG.debug("Unable to close outbound", x); } } private void ensureFillInterested() { if (LOG.isDebugEnabled()) LOG.debug("ensureFillInterested {}", SslConnection.this); SslConnection.this.tryFillInterested(_sslReadCallback); } @Override public boolean isOutputShutdown() { return isOutboundDone() || getEndPoint().isOutputShutdown(); } private boolean isOutboundDone() { try { return _sslEngine.isOutboundDone(); } catch (Throwable x) { LOG.trace("IGNORED", x); return true; } } @Override public void doClose() { // First send the TLS Close Alert, then the FIN. doShutdownOutput(); getEndPoint().close(); super.doClose(); } @Override public Object getTransport() { return getEndPoint(); } @Override public boolean isInputShutdown() { return BufferUtil.isEmpty(_decryptedInput) && (getEndPoint().isInputShutdown() || isInboundDone()); } private boolean isInboundDone() { try { return _sslEngine.isInboundDone(); } catch (Throwable x) { LOG.trace("IGNORED", x); return true; } } private void notifyHandshakeSucceeded(SSLEngine sslEngine) throws SSLException { SslHandshakeListener.Event event = null; for (SslHandshakeListener listener : handshakeListeners) { if (event == null) event = new SslHandshakeListener.Event(sslEngine); try { listener.handshakeSucceeded(event); } catch (SSLException x) { throw x; } catch (Throwable x) { LOG.info("Exception while notifying listener {}", listener, x); } } } private void notifyHandshakeFailed(SSLEngine sslEngine, Throwable failure) { SslHandshakeListener.Event event = null; for (SslHandshakeListener listener : handshakeListeners) { if (event == null) event = new SslHandshakeListener.Event(sslEngine); try { listener.handshakeFailed(event, failure); } catch (Throwable x) { LOG.info("Exception while notifying listener {}", listener, x); } } } private boolean isRenegotiating() { if (!isHandshakeComplete()) return false; if (isTLS13()) return false; if (_sslEngine.getHandshakeStatus() == HandshakeStatus.NOT_HANDSHAKING) return false; return true; } private boolean allowRenegotiate() { if (!isRenegotiationAllowed()) { if (LOG.isDebugEnabled()) LOG.debug("Renegotiation denied {}", SslConnection.this); terminateInput(); return false; } if (getRenegotiationLimit() == 0) { if (LOG.isDebugEnabled()) LOG.debug("Renegotiation limit exceeded {}", SslConnection.this); terminateInput(); return false; } return true; } private boolean isTLS13() { String protocol = _sslEngine.getSession().getProtocol(); return TLS_1_3.equals(protocol); } private Throwable handleException(Throwable x, String context) { try (AutoLock l = _lock.lock()) { if (_failure == null) { _failure = x; if (LOG.isDebugEnabled()) LOG.debug("{} stored {} exception", this, context, x); } else if (x != _failure) { _failure.addSuppressed(x); if (LOG.isDebugEnabled()) LOG.debug("{} suppressed {} exception", this, context, x); } return _failure; } } private void rethrow(Throwable x) throws IOException { if (x instanceof RuntimeException) throw (RuntimeException)x; if (x instanceof Error) throw (Error)x; if (x instanceof IOException) throw (IOException)x; throw new IOException(x); } @Override public String toString() { return super.toEndPointString(); } private final class IncompleteWriteCallback implements Callback, Invocable { @Override public void succeeded() { boolean fillable; boolean interested; try (AutoLock l = _lock.lock()) { if (LOG.isDebugEnabled()) LOG.debug("IncompleteWriteCB succeeded {}", SslConnection.this); releaseEncryptedOutputBuffer(); _flushState = FlushState.IDLE; interested = _fillState == FillState.INTERESTED; fillable = _fillState == FillState.WAIT_FOR_FLUSH; if (fillable) _fillState = FillState.IDLE; } if (interested) ensureFillInterested(); else if (fillable) _decryptedEndPoint.getFillInterest().fillable(); _decryptedEndPoint.getWriteFlusher().completeWrite(); } @Override public void failed(final Throwable x) { boolean failFillInterest; try (AutoLock l = _lock.lock()) { if (LOG.isDebugEnabled()) LOG.debug("IncompleteWriteCB failed {}", SslConnection.this, x); BufferUtil.clear(_encryptedOutput); releaseEncryptedOutputBuffer(); _flushState = FlushState.IDLE; failFillInterest = _fillState == FillState.WAIT_FOR_FLUSH || _fillState == FillState.INTERESTED; if (failFillInterest) _fillState = FillState.IDLE; } getExecutor().execute(() -> { if (failFillInterest) _decryptedEndPoint.getFillInterest().onFail(x); _decryptedEndPoint.getWriteFlusher().onFail(x); }); } @Override public InvocationType getInvocationType() { return _decryptedEndPoint.getWriteFlusher().getCallbackInvocationType(); } @Override public String toString() { return String.format("SSL@%h.DEP.writeCallback", SslConnection.this); } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy