All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.nosqlbench.engine.api.activityimpl.marker.ContiguousOutputChunker Maven / Gradle / Ivy

Go to download

The engine API for nosqlbench; Provides the interfaces needed to build internal modules for the nosqlbench core engine

There is a newer version: 5.17.0
Show newest version
/*
 *
 *    Copyright 2016 jshook
 *    Licensed under the Apache License, Version 2.0 (the "License");
 *    you may not use this file except in compliance with the License.
 *    You may obtain a copy of the License at
 *
 *        http://www.apache.org/licenses/LICENSE-2.0
 *
 *    Unless required by applicable law or agreed to in writing, software
 *    distributed under the License is distributed on an "AS IS" BASIS,
 *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *    See the License for the specific language governing permissions and
 *    limitations under the License.
 * /
 */

package io.nosqlbench.engine.api.activityimpl.marker;

import io.nosqlbench.engine.api.activityapi.core.Activity;
import io.nosqlbench.engine.api.activityapi.cyclelog.buffers.results.CycleResult;
import io.nosqlbench.engine.api.activityapi.cyclelog.buffers.results.CycleResultsIntervalSegment;
import io.nosqlbench.engine.api.activityapi.cyclelog.buffers.results.CycleResultsSegment;
import io.nosqlbench.engine.api.activityapi.output.Output;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Semaphore;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

/**
 * This is the default cycle output implementation for NB when
 * the input cycles are known to be contiguous.
 * 

* This cycle marker wraps another tracking structure in order to * allow for flexible buffering methods. The extents are buffer segments * which can be managed atomically. They are chained here in two chains: * The marking chain and the tracking chain. When the atomic marking head * is non-null, then marking is possible, but marking calls block otherwise. * The same is true for the tracking head element. *

* The nowMarking and nowTracking conditions are meant to be locked and awaited * by marking and tracking calls respectively. Conversely, they are expected * to be signaled by tracking and marking calls. *

* This implementation needs to be adapted to onAfterOpStop early exit of either * marker or tracker threads with no deadlock. */ public class ContiguousOutputChunker implements Output { private final static Logger logger = LoggerFactory.getLogger(ContiguousOutputChunker.class); private final int extentSize; private final int maxExtents; private List readers = new ArrayList<>(); private AtomicLong min; private AtomicLong nextMin; private AtomicReference markingExtents = new AtomicReference<>(); private ReentrantLock lock = new ReentrantLock(false); private Condition nowMarking = lock.newCondition(); private Semaphore mutex = new Semaphore(1, false); public ContiguousOutputChunker(long min, long nextRangeMin, int extentSize, int maxExtents) { this.min = new AtomicLong(min); this.nextMin = new AtomicLong(nextRangeMin); this.extentSize = extentSize; this.maxExtents = maxExtents; initExtents(); } public ContiguousOutputChunker(Activity activity) { if (!(activity.getInputDispenserDelegate().getInput(0).isContiguous())) { throw new RuntimeException("This type of output may not be used with non-contiguous inputs yet."); // If you are looking at this code, it's because we count updates to extents to provide // efficient marker extent handling. The ability to use segmented inputs with markers will // come in a future append. } this.min = new AtomicLong(activity.getActivityDef().getStartCycle()); this.nextMin = new AtomicLong(activity.getActivityDef().getEndCycle()); long stride = activity.getParams().getOptionalLong("stride").orElse(1L); long cycleCount = nextMin.get() - min.get(); if ((cycleCount % stride) != 0) { throw new RuntimeException("stride must evenly divide into cycles."); // TODO: Consider setting cycles to " ... } this.extentSize = calculateExtentSize(cycleCount, stride); this.maxExtents = 3; initExtents(); } private synchronized void initExtents() { ByteTrackerExtent extent = new ByteTrackerExtent(min.get(), (min.get() + extentSize)); this.markingExtents.set(extent); for (int i = 0; i < maxExtents; i++) { extent = extent.extend(); logger.debug("added tracker extent " + extent.rangeSummary()); } logger.info("using max " + maxExtents + " extents with getCount: " + extentSize); } @Override public synchronized void onCycleResultSegment(CycleResultsSegment segment) { logger.trace("on-cycle-result-segment: (" + segment + ")"); for (CycleResult cr : segment) { onCycleResult(cr.getCycle(), cr.getResult()); } } @Override public synchronized boolean onCycleResult(long completedCycle, int result) { logger.trace("on-cycle-result: (" + completedCycle + "," + result + ")"); try { while (true) { ByteTrackerExtent extent = this.markingExtents.get(); long unmarked = extent.markResult(completedCycle, result); if (unmarked > 0) { return true; } else if (unmarked == 0) { try { mutex.acquire(); ByteTrackerExtent head = this.markingExtents.get(); while (head.isFullyFilled()) { head.extend(); if (!this.markingExtents.compareAndSet(head, head.getNextExtent().get())) { throw new RuntimeException("Unable to swap head extent."); } onFullyFilled(head); head = this.markingExtents.get(); } mutex.release(); } catch (InterruptedException ignored) { } catch (Throwable t) { throw t; } return true; } else { System.out.println("whoops"); } } } catch (Throwable t) { throw t; // for debugging } } @Override public synchronized void close() throws Exception { try { mutex.acquire(); ByteTrackerExtent e = this.markingExtents.get(); while (e != null) { onFullyFilled(e); e = e.getNextExtent().get(); } mutex.release(); for (Output reader : this.readers) { logger.debug("closing downstream reader: " + reader); reader.close(); } } catch (Throwable t) { logger.error("Error while attempting to close " +this + ": " + t, t); throw t; } } private void onFullyFilled(ByteTrackerExtent extent) { logger.trace("MARKER>: fully filled: " + extent); for (Output reader : readers) { CycleResultsIntervalSegment remainingSegment = extent.getRemainingSegment(); if (remainingSegment != null) { reader.onCycleResultSegment(remainingSegment); } } } private void onFullyServed(ByteTrackerExtent firstReadable) { logger.debug("TRACKER: fully tracked: " + firstReadable); } public synchronized void addExtentReader(Output reader) { this.readers.add(reader); } public synchronized void removeExtentReader(Output reader) { this.readers.remove(reader); } private int calculateExtentSize(long cycleCount, long stride) { if (cycleCount <= 2000000) { return (int) cycleCount; } for (int cs = 2000000; cs > 500000; cs--) { if ((cycleCount % cs) == 0 && (cs % stride) == 0) { return cs; } } throw new RuntimeException("no even divisor of cycleCount and Stride between 500K and 2M, with cycles=" + cycleCount + ", and stride=" + stride); } @Override public String toString() { return ContiguousOutputChunker.class.getSimpleName() + "{" + "extentSize=" + extentSize + ", maxExtents=" + maxExtents + ", readers=" + readers + ", min=" + min + ", nextMin=" + nextMin + ", markingExtents/Chain=" + markingExtents.get().getChainSize() + '}'; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy