All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.nosqlbench.virtdata.library.basics.shared.distributions.WeightedStringsFromCSV Maven / Gradle / Ivy

There is a newer version: 5.17.0
Show newest version
package io.nosqlbench.virtdata.library.basics.shared.distributions;

import io.nosqlbench.nb.api.content.NBIO;
import io.nosqlbench.virtdata.api.annotations.Categories;
import io.nosqlbench.virtdata.api.annotations.Category;
import io.nosqlbench.virtdata.api.annotations.ThreadSafeMapper;
import io.nosqlbench.virtdata.library.basics.core.stathelpers.AliasSamplerDoubleInt;
import io.nosqlbench.virtdata.library.basics.shared.from_long.to_long.Hash;
import io.nosqlbench.virtdata.library.basics.core.stathelpers.EvProbD;
import org.apache.commons.csv.CSVParser;
import org.apache.commons.csv.CSVRecord;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.function.LongFunction;

/**
 * Provides sampling of a given field in a CSV file according
 * to discrete probabilities. The CSV file must have headers which can
 * be used to find the named columns for value and weight. The value column
 * contains the string result to be returned by the function. The weight
 * column contains the floating-point weight or mass associated with the
 * value on the same line. All the weights are normalized automatically.
 *
 * 

If there are multiple file names containing the same format, then they * will all be read in the same way.

* *

If the first word in the filenames list is 'map', then the values will not * be pseudo-randomly selected. Instead, they will be mapped over in some * other unsorted and stable order as input values vary from 0L to Long.MAX_VALUE.

* *

Generally, you want to leave out the 'map' directive to get "random sampling" * of these values.

* *

This function works the same as the three-parametered form of WeightedStrings, * which is deprecated in lieu of this one. Use this one instead.

*/ @Categories(Category.general) @ThreadSafeMapper public class WeightedStringsFromCSV implements LongFunction { private final String[] filenames; private final String valueColumn; private final String weightColumn; private final String[] lines; private final AliasSamplerDoubleInt sampler; private Hash hash; /** * Create a sampler of strings from the given CSV file. The CSV file must have plain CSV headers * as its first line. * @param valueColumn The name of the value column to be sampled * @param weightColumn The name of the weight column, which must be parsable as a double * @param filenames One or more file names which will be read in to the sampler buffer */ public WeightedStringsFromCSV(String valueColumn, String weightColumn, String... filenames) { this.filenames = filenames; this.valueColumn = valueColumn; this.weightColumn = weightColumn; List events = new ArrayList<>(); List values = new ArrayList<>(); if (filenames[0].equals("map")) { filenames = Arrays.copyOfRange(filenames,1,filenames.length); this.hash=null; } else { if (filenames[0].equals("hash")) { filenames = Arrays.copyOfRange(filenames,1,filenames.length); } this.hash=new Hash(); } for (String filename: filenames) { if (!filename.endsWith(".csv")) { filename = filename+".csv"; } CSVParser csvdata = NBIO.readFileCSV(filename); for (CSVRecord csvdatum : csvdata) { if (csvdatum.get(valueColumn) != null && csvdatum.get(weightColumn) != null) { String value = csvdatum.get(valueColumn); values.add(value); String weight = csvdatum.get(weightColumn); if(!weight.isEmpty()) { events.add(new EvProbD(values.size() - 1, Double.valueOf(weight))); } } } } sampler = new AliasSamplerDoubleInt(events); lines = values.toArray(new String[0]); } @Override public String apply(long value) { if (hash!=null) { value = hash.applyAsLong(value); } double unitValue = (double) value / (double) Long.MAX_VALUE; int idx = sampler.applyAsInt(unitValue); return lines[idx]; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy