All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.emory.mathcs.backport.java.util.concurrent.LinkedBlockingDeque Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtdata libraries, based on apache commons math 4

There is a newer version: 5.17.0
Show newest version
/*
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/licenses/publicdomain
 */

package edu.emory.mathcs.backport.java.util.concurrent;
import edu.emory.mathcs.backport.java.util.*;
import edu.emory.mathcs.backport.java.util.concurrent.locks.*;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
import edu.emory.mathcs.backport.java.util.concurrent.helpers.Utils;

/**
 * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
 * linked nodes.
 *
 * 

The optional capacity bound constructor argument serves as a * way to prevent excessive expansion. The capacity, if unspecified, * is equal to {@link Integer#MAX_VALUE}. Linked nodes are * dynamically created upon each insertion unless this would bring the * deque above capacity. * *

Most operations run in constant time (ignoring time spent * blocking). Exceptions include {@link #remove(Object) remove}, * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link * #removeLastOccurrence removeLastOccurrence}, {@link #contains * contains}, {@link #iterator iterator.remove()}, and the bulk * operations, all of which run in linear time. * *

This class and its iterator implement all of the * optional methods of the {@link Collection} and {@link * Iterator} interfaces. * *

This class is a member of the * * Java Collections Framework. * * @since 1.6 * @author Doug Lea */ public class LinkedBlockingDeque extends AbstractQueue implements BlockingDeque, java.io.Serializable { /* * Implemented as a simple doubly-linked list protected by a * single lock and using conditions to manage blocking. */ /* * We have "diamond" multiple interface/abstract class inheritance * here, and that introduces ambiguities. Often we want the * BlockingDeque javadoc combined with the AbstractQueue * implementation, so a lot of method specs are duplicated here. */ private static final long serialVersionUID = -387911632671998426L; /** Doubly-linked list node class */ static final class Node { Object item; Node prev; Node next; Node(Object x, Node p, Node n) { item = x; prev = p; next = n; } } /** Pointer to first node */ private transient Node first; /** Pointer to last node */ private transient Node last; /** Number of items in the deque */ private transient int count; /** Maximum number of items in the deque */ private final int capacity; /** Main lock guarding all access */ private final ReentrantLock lock = new ReentrantLock(); /** Condition for waiting takes */ private final Condition notEmpty = lock.newCondition(); /** Condition for waiting puts */ private final Condition notFull = lock.newCondition(); /** * Creates a LinkedBlockingDeque with a capacity of * {@link Integer#MAX_VALUE}. */ public LinkedBlockingDeque() { this(Integer.MAX_VALUE); } /** * Creates a LinkedBlockingDeque with the given (fixed) capacity. * * @param capacity the capacity of this deque * @throws IllegalArgumentException if capacity is less than 1 */ public LinkedBlockingDeque(int capacity) { if (capacity <= 0) throw new IllegalArgumentException(); this.capacity = capacity; } /** * Creates a LinkedBlockingDeque with a capacity of * {@link Integer#MAX_VALUE}, initially containing the elements of * the given collection, added in traversal order of the * collection's iterator. * * @param c the collection of elements to initially contain * @throws NullPointerException if the specified collection or any * of its elements are null */ public LinkedBlockingDeque(Collection c) { this(Integer.MAX_VALUE); for (Iterator itr = c.iterator(); itr.hasNext(); ) { Object e = itr.next(); add(e); } } // Basic linking and unlinking operations, called only while holding lock /** * Links e as first element, or returns false if full. */ private boolean linkFirst(Object e) { if (count >= capacity) return false; ++count; Node f = first; Node x = new Node(e, null, f); first = x; if (last == null) last = x; else f.prev = x; notEmpty.signal(); return true; } /** * Links e as last element, or returns false if full. */ private boolean linkLast(Object e) { if (count >= capacity) return false; ++count; Node l = last; Node x = new Node(e, l, null); last = x; if (first == null) first = x; else l.next = x; notEmpty.signal(); return true; } /** * Removes and returns first element, or null if empty. */ private Object unlinkFirst() { Node f = first; if (f == null) return null; Node n = f.next; first = n; if (n == null) last = null; else n.prev = null; --count; notFull.signal(); return f.item; } /** * Removes and returns last element, or null if empty. */ private Object unlinkLast() { Node l = last; if (l == null) return null; Node p = l.prev; last = p; if (p == null) first = null; else p.next = null; --count; notFull.signal(); return l.item; } /** * Unlink e */ private void unlink(Node x) { Node p = x.prev; Node n = x.next; if (p == null) { if (n == null) first = last = null; else { n.prev = null; first = n; } } else if (n == null) { p.next = null; last = p; } else { p.next = n; n.prev = p; } --count; notFull.signalAll(); } // BlockingDeque methods /** * @throws IllegalStateException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void addFirst(Object e) { if (!offerFirst(e)) throw new IllegalStateException("Deque full"); } /** * @throws IllegalStateException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void addLast(Object e) { if (!offerLast(e)) throw new IllegalStateException("Deque full"); } /** * @throws NullPointerException {@inheritDoc} */ public boolean offerFirst(Object e) { if (e == null) throw new NullPointerException(); lock.lock(); try { return linkFirst(e); } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} */ public boolean offerLast(Object e) { if (e == null) throw new NullPointerException(); lock.lock(); try { return linkLast(e); } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public void putFirst(Object e) throws InterruptedException { if (e == null) throw new NullPointerException(); lock.lock(); try { while (!linkFirst(e)) notFull.await(); } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public void putLast(Object e) throws InterruptedException { if (e == null) throw new NullPointerException(); lock.lock(); try { while (!linkLast(e)) notFull.await(); } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public boolean offerFirst(Object e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) throw new NullPointerException(); long nanos = unit.toNanos(timeout); long deadline = Utils.nanoTime() + nanos; lock.lockInterruptibly(); try { for (;;) { if (linkFirst(e)) return true; if (nanos <= 0) return false; notFull.await(nanos, TimeUnit.NANOSECONDS); nanos = deadline - Utils.nanoTime(); } } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public boolean offerLast(Object e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) throw new NullPointerException(); long nanos = unit.toNanos(timeout); long deadline = Utils.nanoTime() + nanos; lock.lockInterruptibly(); try { for (;;) { if (linkLast(e)) return true; if (nanos <= 0) return false; notFull.await(nanos, TimeUnit.NANOSECONDS); nanos = deadline - Utils.nanoTime(); } } finally { lock.unlock(); } } /** * @throws NoSuchElementException {@inheritDoc} */ public Object removeFirst() { Object x = pollFirst(); if (x == null) throw new NoSuchElementException(); return x; } /** * @throws NoSuchElementException {@inheritDoc} */ public Object removeLast() { Object x = pollLast(); if (x == null) throw new NoSuchElementException(); return x; } public Object pollFirst() { lock.lock(); try { return unlinkFirst(); } finally { lock.unlock(); } } public Object pollLast() { lock.lock(); try { return unlinkLast(); } finally { lock.unlock(); } } public Object takeFirst() throws InterruptedException { lock.lock(); try { Object x; while ( (x = unlinkFirst()) == null) notEmpty.await(); return x; } finally { lock.unlock(); } } public Object takeLast() throws InterruptedException { lock.lock(); try { Object x; while ( (x = unlinkLast()) == null) notEmpty.await(); return x; } finally { lock.unlock(); } } public Object pollFirst(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); long deadline = Utils.nanoTime() + nanos; lock.lockInterruptibly(); try { for (;;) { Object x = unlinkFirst(); if (x != null) return x; if (nanos <= 0) return null; notEmpty.await(nanos, TimeUnit.NANOSECONDS); nanos = deadline - Utils.nanoTime(); } } finally { lock.unlock(); } } public Object pollLast(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); long deadline = Utils.nanoTime() + nanos; lock.lockInterruptibly(); try { for (;;) { Object x = unlinkLast(); if (x != null) return x; if (nanos <= 0) return null; notEmpty.await(nanos, TimeUnit.NANOSECONDS); nanos = deadline - Utils.nanoTime(); } } finally { lock.unlock(); } } /** * @throws NoSuchElementException {@inheritDoc} */ public Object getFirst() { Object x = peekFirst(); if (x == null) throw new NoSuchElementException(); return x; } /** * @throws NoSuchElementException {@inheritDoc} */ public Object getLast() { Object x = peekLast(); if (x == null) throw new NoSuchElementException(); return x; } public Object peekFirst() { lock.lock(); try { return (first == null) ? null : first.item; } finally { lock.unlock(); } } public Object peekLast() { lock.lock(); try { return (last == null) ? null : last.item; } finally { lock.unlock(); } } public boolean removeFirstOccurrence(Object o) { if (o == null) return false; lock.lock(); try { for (Node p = first; p != null; p = p.next) { if (o.equals(p.item)) { unlink(p); return true; } } return false; } finally { lock.unlock(); } } public boolean removeLastOccurrence(Object o) { if (o == null) return false; lock.lock(); try { for (Node p = last; p != null; p = p.prev) { if (o.equals(p.item)) { unlink(p); return true; } } return false; } finally { lock.unlock(); } } // BlockingQueue methods /** * Inserts the specified element at the end of this deque unless it would * violate capacity restrictions. When using a capacity-restricted deque, * it is generally preferable to use method {@link #offer(Object) offer}. * *

This method is equivalent to {@link #addLast}. * * @throws IllegalStateException if the element cannot be added at this * time due to capacity restrictions * @throws NullPointerException if the specified element is null */ public boolean add(Object e) { addLast(e); return true; } /** * @throws NullPointerException if the specified element is null */ public boolean offer(Object e) { return offerLast(e); } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public void put(Object e) throws InterruptedException { putLast(e); } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public boolean offer(Object e, long timeout, TimeUnit unit) throws InterruptedException { return offerLast(e, timeout, unit); } /** * Retrieves and removes the head of the queue represented by this deque. * This method differs from {@link #poll poll} only in that it throws an * exception if this deque is empty. * *

This method is equivalent to {@link #removeFirst() removeFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ public Object remove() { return removeFirst(); } public Object poll() { return pollFirst(); } public Object take() throws InterruptedException { return takeFirst(); } public Object poll(long timeout, TimeUnit unit) throws InterruptedException { return pollFirst(timeout, unit); } /** * Retrieves, but does not remove, the head of the queue represented by * this deque. This method differs from {@link #peek peek} only in that * it throws an exception if this deque is empty. * *

This method is equivalent to {@link #getFirst() getFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ public Object element() { return getFirst(); } public Object peek() { return peekFirst(); } /** * Returns the number of additional elements that this deque can ideally * (in the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this deque * less the current size of this deque. * *

Note that you cannot always tell if an attempt to insert * an element will succeed by inspecting remainingCapacity * because it may be the case that another thread is about to * insert or remove an element. */ public int remainingCapacity() { lock.lock(); try { return capacity - count; } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection c) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); lock.lock(); try { for (Node p = first; p != null; p = p.next) c.add(p.item); int n = count; count = 0; first = last = null; notFull.signalAll(); return n; } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection c, int maxElements) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); lock.lock(); try { int n = 0; while (n < maxElements && first != null) { c.add(first.item); first.prev = null; first = first.next; --count; ++n; } if (first == null) last = null; notFull.signalAll(); return n; } finally { lock.unlock(); } } // Stack methods /** * @throws IllegalStateException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void push(Object e) { addFirst(e); } /** * @throws NoSuchElementException {@inheritDoc} */ public Object pop() { return removeFirst(); } // Collection methods /** * Removes the first occurrence of the specified element from this deque. * If the deque does not contain the element, it is unchanged. * More formally, removes the first element e such that * o.equals(e) (if such an element exists). * Returns true if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * *

This method is equivalent to * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}. * * @param o element to be removed from this deque, if present * @return true if this deque changed as a result of the call */ public boolean remove(Object o) { return removeFirstOccurrence(o); } /** * Returns the number of elements in this deque. * * @return the number of elements in this deque */ public int size() { lock.lock(); try { return count; } finally { lock.unlock(); } } /** * Returns true if this deque contains the specified element. * More formally, returns true if and only if this deque contains * at least one element e such that o.equals(e). * * @param o object to be checked for containment in this deque * @return true if this deque contains the specified element */ public boolean contains(Object o) { if (o == null) return false; lock.lock(); try { for (Node p = first; p != null; p = p.next) if (o.equals(p.item)) return true; return false; } finally { lock.unlock(); } } /** * Variant of removeFirstOccurrence needed by iterator.remove. * Searches for the node, not its contents. */ boolean removeNode(Node e) { lock.lock(); try { for (Node p = first; p != null; p = p.next) { if (p == e) { unlink(p); return true; } } return false; } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this deque, in * proper sequence (from first to last element). * *

The returned array will be "safe" in that no references to it are * maintained by this deque. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this deque */ public Object[] toArray() { lock.lock(); try { Object[] a = new Object[count]; int k = 0; for (Node p = first; p != null; p = p.next) a[k++] = p.item; return a; } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this deque, in * proper sequence; the runtime type of the returned array is that of * the specified array. If the deque fits in the specified array, it * is returned therein. Otherwise, a new array is allocated with the * runtime type of the specified array and the size of this deque. * *

If this deque fits in the specified array with room to spare * (i.e., the array has more elements than this deque), the element in * the array immediately following the end of the deque is set to * null. * *

Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *

Suppose x is a deque known to contain only strings. * The following code can be used to dump the deque into a newly * allocated array of String: * *

     *     String[] y = x.toArray(new String[0]);
* * Note that toArray(new Object[0]) is identical in function to * toArray(). * * @param a the array into which the elements of the deque are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this deque * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this deque * @throws NullPointerException if the specified array is null */ public Object[] toArray(Object[] a) { lock.lock(); try { if (a.length < count) a = (Object[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), count ); int k = 0; for (Node p = first; p != null; p = p.next) a[k++] = (Object)p.item; if (a.length > k) a[k] = null; return a; } finally { lock.unlock(); } } public String toString() { lock.lock(); try { return super.toString(); } finally { lock.unlock(); } } /** * Atomically removes all of the elements from this deque. * The deque will be empty after this call returns. */ public void clear() { lock.lock(); try { first = last = null; count = 0; notFull.signalAll(); } finally { lock.unlock(); } } /** * Returns an iterator over the elements in this deque in proper sequence. * The elements will be returned in order from first (head) to last (tail). * The returned Iterator is a "weakly consistent" iterator that * will never throw {@link java.util.ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. * * @return an iterator over the elements in this deque in proper sequence */ public Iterator iterator() { return new Itr(); } /** * Returns an iterator over the elements in this deque in reverse * sequential order. The elements will be returned in order from * last (tail) to first (head). * The returned Iterator is a "weakly consistent" iterator that * will never throw {@link java.util.ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. */ public Iterator descendingIterator() { return new DescendingItr(); } /** * Base class for Iterators for LinkedBlockingDeque */ private abstract class AbstractItr implements Iterator { /** * The next node to return in next */ Node next; /** * nextItem holds on to item fields because once we claim that * an element exists in hasNext(), we must return item read * under lock (in advance()) even if it was in the process of * being removed when hasNext() was called. */ Object nextItem; /** * Node returned by most recent call to next. Needed by remove. * Reset to null if this element is deleted by a call to remove. */ private Node lastRet; AbstractItr() { advance(); // set to initial position } /** * Advances next, or if not yet initialized, sets to first node. * Implemented to move forward vs backward in the two subclasses. */ abstract void advance(); public boolean hasNext() { return next != null; } public Object next() { if (next == null) throw new NoSuchElementException(); lastRet = next; Object x = nextItem; advance(); return x; } public void remove() { Node n = lastRet; if (n == null) throw new IllegalStateException(); lastRet = null; // Note: removeNode rescans looking for this node to make // sure it was not already removed. Otherwise, trying to // re-remove could corrupt list. removeNode(n); } } /** Forward iterator */ private class Itr extends AbstractItr { void advance() { final ReentrantLock lock = LinkedBlockingDeque.this.lock; lock.lock(); try { next = (next == null)? first : next.next; nextItem = (next == null)? null : next.item; } finally { lock.unlock(); } } } /** * Descending iterator for LinkedBlockingDeque */ private class DescendingItr extends AbstractItr { void advance() { final ReentrantLock lock = LinkedBlockingDeque.this.lock; lock.lock(); try { next = (next == null)? last : next.prev; nextItem = (next == null)? null : next.item; } finally { lock.unlock(); } } } /** * Save the state of this deque to a stream (that is, serialize it). * * @serialData The capacity (int), followed by elements (each an * Object) in the proper order, followed by a null * @param s the stream */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { lock.lock(); try { // Write out capacity and any hidden stuff s.defaultWriteObject(); // Write out all elements in the proper order. for (Node p = first; p != null; p = p.next) s.writeObject(p.item); // Use trailing null as sentinel s.writeObject(null); } finally { lock.unlock(); } } /** * Reconstitute this deque from a stream (that is, * deserialize it). * @param s the stream */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); count = 0; first = null; last = null; // Read in all elements and place in queue for (;;) { Object item = (Object)s.readObject(); if (item == null) break; add(item); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy